Home
Class 12
MATHS
Let vec(a) = hat(i) - alpha hat(j) + be...

Let ` vec(a) = hat(i) - alpha hat(j) + beta hat(k) , vec(b) = 3 hat(i) + beta hat(j) - alpha hat(k) and vec(c) = - alpha hat(i) - 2 hat(j) + hat(k)` , where ` alpha and beta ` are integers. If ` vec(a)* vec(b) = - 1 and vec(b) * vec(c) = 10 " then " ( vec(a) xx vec(b)) * vec(c)` is equal to _____

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the given conditions and perform the necessary calculations. ### Step 1: Define the vectors Given: - \( \vec{a} = \hat{i} - \alpha \hat{j} + \beta \hat{k} \) - \( \vec{b} = 3 \hat{i} + \beta \hat{j} - \alpha \hat{k} \) - \( \vec{c} = -\alpha \hat{i} - 2 \hat{j} + \hat{k} \) ### Step 2: Use the first condition \( \vec{a} \cdot \vec{b} = -1 \) Calculate the dot product: \[ \vec{a} \cdot \vec{b} = (\hat{i} - \alpha \hat{j} + \beta \hat{k}) \cdot (3 \hat{i} + \beta \hat{j} - \alpha \hat{k}) \] Calculating the dot product: \[ = 1 \cdot 3 + (-\alpha) \cdot \beta + \beta \cdot (-\alpha) \] \[ = 3 - \alpha \beta - \alpha \beta \] \[ = 3 - 2\alpha \beta \] Setting this equal to -1: \[ 3 - 2\alpha \beta = -1 \] \[ 2\alpha \beta = 4 \quad \Rightarrow \quad \alpha \beta = 2 \quad \text{(Equation 1)} \] ### Step 3: Use the second condition \( \vec{b} \cdot \vec{c} = 10 \) Calculate the dot product: \[ \vec{b} \cdot \vec{c} = (3 \hat{i} + \beta \hat{j} - \alpha \hat{k}) \cdot (-\alpha \hat{i} - 2 \hat{j} + \hat{k}) \] Calculating the dot product: \[ = 3 \cdot (-\alpha) + \beta \cdot (-2) + (-\alpha) \cdot 1 \] \[ = -3\alpha - 2\beta - \alpha \] \[ = -4\alpha - 2\beta \] Setting this equal to 10: \[ -4\alpha - 2\beta = 10 \] Dividing the entire equation by -2: \[ 2\alpha + \beta = -5 \quad \text{(Equation 2)} \] ### Step 4: Solve the system of equations We have two equations: 1. \( \alpha \beta = 2 \) 2. \( 2\alpha + \beta = -5 \) From Equation 2, express \( \beta \) in terms of \( \alpha \): \[ \beta = -5 - 2\alpha \] Substituting this into Equation 1: \[ \alpha(-5 - 2\alpha) = 2 \] \[ -5\alpha - 2\alpha^2 = 2 \] Rearranging gives: \[ 2\alpha^2 + 5\alpha + 2 = 0 \] ### Step 5: Factor the quadratic equation Factoring: \[ (2\alpha + 1)(\alpha + 2) = 0 \] Thus, the solutions for \( \alpha \) are: \[ \alpha = -\frac{1}{2} \quad \text{or} \quad \alpha = -2 \] ### Step 6: Find corresponding \( \beta \) values For \( \alpha = -2 \): \[ \beta = \frac{2}{-2} = -1 \] For \( \alpha = -\frac{1}{2} \): \[ \beta = 2 \quad \text{(not an integer, discard)} \] Thus, we have: \[ \alpha = -2, \quad \beta = -1 \] ### Step 7: Substitute back to find vectors Substituting \( \alpha \) and \( \beta \) into the vectors: \[ \vec{a} = \hat{i} + 2\hat{j} - \hat{k} \] \[ \vec{b} = 3\hat{i} - \hat{j} + 2\hat{k} \] \[ \vec{c} = 2\hat{i} - 2\hat{j} + \hat{k} \] ### Step 8: Calculate \( \vec{a} \times \vec{b} \) Using the determinant: \[ \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & -1 \\ 3 & -1 & 2 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i}(2 \cdot 2 - (-1) \cdot (-1)) - \hat{j}(1 \cdot 2 - 3 \cdot (-1)) + \hat{k}(1 \cdot (-1) - 2 \cdot 3) \] \[ = \hat{i}(4 - 1) - \hat{j}(2 + 3) + \hat{k}(-1 - 6) \] \[ = 3\hat{i} - 5\hat{j} - 7\hat{k} \] ### Step 9: Calculate \( (\vec{a} \times \vec{b}) \cdot \vec{c} \) Now, calculate the dot product: \[ (3\hat{i} - 5\hat{j} - 7\hat{k}) \cdot (2\hat{i} - 2\hat{j} + \hat{k}) \] Calculating: \[ = 3 \cdot 2 + (-5) \cdot (-2) + (-7) \cdot 1 \] \[ = 6 + 10 - 7 = 9 \] ### Final Answer Thus, the value of \( (\vec{a} \times \vec{b}) \cdot \vec{c} \) is: \[ \boxed{9} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS 2021

    JEE MAINS PREVIOUS YEAR|Exercise Mathematics Section A|40 Videos
  • JEE MAINS 2021

    JEE MAINS PREVIOUS YEAR|Exercise Mathematics Section B|20 Videos
  • JEE MAINS 2021

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION-A)|80 Videos
  • JEE MAINS 2020

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS|250 Videos
  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION - B)|10 Videos

Similar Questions

Explore conceptually related problems

If vec(a) = alpha hat(i) + beta hat(j)+ 3 hat(k) , vec(b) = - beta hat(i) - alpha hat(j) - hat(k) and vec( c ) = hat(i) - 2hat(j) - hat(k) such that vec( a) . vec(b) =1 and vec( b ).vec(c ) = - 3 then (1)/(3) ((vec(a) xx vec(b)).vec( c)) is equal to "________" .

Let vec(a) = hat(i) + hat(j) + hat(k),vec(b) = hat(i) - hat(j) + 2hat(k) and vec(c) = xhat(i) + (x-2)hat(j) - hat(k) . If the vector vec(c) lies in the plane of vec(a) and vec(b) then x equals

Let vec(a) = hat(i) + hat(j) + hat(k), vec(b) = hat(i) - hat(j) + 2hat(k) and vec(c) = xhat(i) + (x-2)hat(j) - hat(k) . If the vector vec(c) lies in the plane of vec(a) & vec(b) , then x equals

If vec(a) = hat(i) + hat(j) + 2 hat(k) and vec(b) = 3 hat(i) + 2 hat(j) - hat(k) , find the value of (vec(a) + 3 vec(b)) . ( 2 vec(a) - vec(b)) .

If vec(a) = hat(i) + hat(j) + hat(k), vec(b) = hat(i) - hat(j) + hat(k) and vec(c )= hat(i) + hat(j) - hat(k) , then what is vec(a) xx (vec(b)+ vec(c )) + vec(b) xx (vec(c ) + vec(a)) + vec(c ) xx (vec(a) + vec(b)) is equal to ?

If vec(a)= hat(i) - 2hat(j) + 5hat(k) and vec(b) = 2hat(i) + hat(j) -3hat(k) , then (vec(b) - vec(a)).(3 vec(a) +vec(b)) equal to?

If vec(a) = hat(i)- hat(k) , vec(b) = x hat(i) + hat(j) + (1-x) hat(k), vec(c ) = y hat(i) + x hat(j) + (1+ x- y)hat(k) then vec(a).(vec(b) xx vec(c )) depends on

Let vec(alpha)=hat(i) +2 hat(j) - hat(k), vec(beta) = 2 hat(i) - hat(j) + 3 hat(k) and vec(lambda)=2hat(i) + hat(j) + 6 hat(k) be three vectors. If vec(alpha) and vec(beta) are both perpendicular to the vector vec(delta) and vec(delta).vec(lambda)=10 , then what is the magnitude of vec(delta) ?

If vec(a) = 3 hat(i) + 2 hat(k) , vec(b) = 3hat(j) - hat(k) and vec(c ) = hat(i) + hat(j) + hat(k) . Find ( vec(a) xx vec(b)). vec(c ) .

JEE MAINS PREVIOUS YEAR-JEE MAINS 2021-MATHEMATICS (SECTION-B)
  1. For real numbers alpha and beta, consider the following system of line...

    Text Solution

    |

  2. Let vec(a) = hat(i) + hat(j) + hat(k), vec(b) and vec(c )= hat(j)-hat(...

    Text Solution

    |

  3. If (log)3 2,(log)3(2^x-5)a n d(log)3(2^x-7/2) are in arithmetic progre...

    Text Solution

    |

  4. Find the domain of function f(x)=(log)4[(log)5{(log)3(18 x-x^2-77}]

    Text Solution

    |

  5. Let f(x)= |(sin^(2)x,-2+cos^(2)x,cos2x),(2+sin^(2)x,cos^(2)x,cos2x),(s...

    Text Solution

    |

  6. Let F:[3,5] rarr R be a twice differentiable function on (3,5) such th...

    Text Solution

    |

  7. Let a plane p passes through the point (3,7,-7) and contain the line ,...

    Text Solution

    |

  8. Let S= {1,2,3,4 5,6, 7}. Then the number of possible functions f: S ra...

    Text Solution

    |

  9. If y= y(x), y in [0, (pi)/(2)) is the solution of the differential equ...

    Text Solution

    |

  10. Let f: [0,3] rarr R be defined by f(x)= "min" {x-[x], 1+[x]-x} where [...

    Text Solution

    |

  11. Let vec(a) = hat(i) - alpha hat(j) + beta hat(k) , vec(b) = 3 hat(i) ...

    Text Solution

    |

  12. Find the distance of the point P3,\ 4,\ 4) from the point where the li...

    Text Solution

    |

  13. If the real part of the complex number z = ( 3 + 2 i cos theta)/( 1 -...

    Text Solution

    |

  14. Let E be an ellipse whose axes are parallel to the co-ordinates axes, ...

    Text Solution

    |

  15. If int (0) ^(pi) ( sin ^(3) x) e^(- sin^(2)x)dx = alpha - (beta)/( e)...

    Text Solution

    |

  16. Find number of real roots of equation e^(4x) + e^(3x) - 4e^(2x) + e^(x...

    Text Solution

    |

  17. Let y = y (x) be the solution of the differential equation dy = e^(a...

    Text Solution

    |

  18. Let n be a non - negative integer . Then the number of divisors of the...

    Text Solution

    |

  19. Let A = { n in N | n^(2) le n + 10,000 } B = { 3k + 1 | k in N } and ...

    Text Solution

    |

  20. If A = [(1,1,1),(0,1,1),(0,0,1)] and M = A + A^(2) + A^(3) + . . . . ...

    Text Solution

    |