Home
Class 12
MATHS
If the real part of the complex number ...

If the real part of the complex number ` z = ( 3 + 2 i cos theta)/( 1 - 3 i cos theta) , theta in (0, (pi)/(2))` is zero, then the value of ` sin^(2) 3 theta + cos ^(2) theta ` is equal to _____

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \sin^2(3\theta) + \cos^2(\theta) \) given that the real part of the complex number \( z = \frac{3 + 2i \cos \theta}{1 - 3i \cos \theta} \) is zero. ### Step-by-Step Solution: 1. **Identify the Complex Number**: \[ z = \frac{3 + 2i \cos \theta}{1 - 3i \cos \theta} \] 2. **Rationalize the Denominator**: Multiply the numerator and denominator by the conjugate of the denominator: \[ z = \frac{(3 + 2i \cos \theta)(1 + 3i \cos \theta)}{(1 - 3i \cos \theta)(1 + 3i \cos \theta)} \] 3. **Calculate the Denominator**: \[ (1 - 3i \cos \theta)(1 + 3i \cos \theta) = 1^2 - (3i \cos \theta)^2 = 1 + 9 \cos^2 \theta \] 4. **Calculate the Numerator**: \[ (3 + 2i \cos \theta)(1 + 3i \cos \theta) = 3 + 9i \cos \theta + 2i \cos \theta - 6 \cos^2 \theta = 3 - 6 \cos^2 \theta + 11i \cos \theta \] 5. **Combine Results**: Thus, \[ z = \frac{3 - 6 \cos^2 \theta + 11i \cos \theta}{1 + 9 \cos^2 \theta} \] 6. **Separate Real and Imaginary Parts**: The real part of \( z \) is: \[ \text{Re}(z) = \frac{3 - 6 \cos^2 \theta}{1 + 9 \cos^2 \theta} \] The imaginary part is: \[ \text{Im}(z) = \frac{11 \cos \theta}{1 + 9 \cos^2 \theta} \] 7. **Set the Real Part to Zero**: For the real part to be zero: \[ 3 - 6 \cos^2 \theta = 0 \] 8. **Solve for \( \cos^2 \theta \)**: Rearranging gives: \[ 6 \cos^2 \theta = 3 \implies \cos^2 \theta = \frac{1}{2} \] Thus, \[ \cos \theta = \frac{1}{\sqrt{2}} \quad (\text{since } \theta \in (0, \frac{\pi}{2})) \] 9. **Determine \( \theta \)**: From \( \cos \theta = \frac{1}{\sqrt{2}} \), we find: \[ \theta = \frac{\pi}{4} \] 10. **Calculate \( \sin^2(3\theta) + \cos^2(\theta) \)**: First, compute \( 3\theta \): \[ 3\theta = 3 \times \frac{\pi}{4} = \frac{3\pi}{4} \] Now calculate: \[ \sin^2(3\theta) = \sin^2\left(\frac{3\pi}{4}\right) = \left(\frac{1}{\sqrt{2}}\right)^2 = \frac{1}{2} \] And: \[ \cos^2(\theta) = \cos^2\left(\frac{\pi}{4}\right) = \left(\frac{1}{\sqrt{2}}\right)^2 = \frac{1}{2} \] 11. **Combine Results**: \[ \sin^2(3\theta) + \cos^2(\theta) = \frac{1}{2} + \frac{1}{2} = 1 \] ### Final Answer: The value of \( \sin^2(3\theta) + \cos^2(\theta) \) is \( \boxed{1} \).
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS 2021

    JEE MAINS PREVIOUS YEAR|Exercise Mathematics Section A|40 Videos
  • JEE MAINS 2021

    JEE MAINS PREVIOUS YEAR|Exercise Mathematics Section B|20 Videos
  • JEE MAINS 2021

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION-A)|80 Videos
  • JEE MAINS 2020

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS|250 Videos
  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION - B)|10 Videos

Similar Questions

Explore conceptually related problems

If cos theta=(-3)/(5),theta in(pi,(3 pi)/(2)), then the value of ((1+sin theta)/(tan theta)+cos2 theta) is

If the real part of the complex number (1 - cos theta + 2 i sin theta) ^(-1) is (1)/(5) for theta in (0, pi), then the value of the integral int _(0) ^(theta) sin xdx is equal to :

Find the real values of theta for which the complex number (1+i cos theta)/(1-2i cos theta) is purely real.

If 2cos(theta)+sin(theta)=1 and (3 pi)/(2)

The curve represented by z=(3)/(2+cos theta+i sin theta),theta in[0,2 pi)

The real value of theta for which the expression (1+i cos theta)/(1-2i cos theta) is real number is

If 2 - cos^(2) theta = 3 sin theta cos theta , sin theta ne cos theta then tan theta is

JEE MAINS PREVIOUS YEAR-JEE MAINS 2021-MATHEMATICS (SECTION-B)
  1. For real numbers alpha and beta, consider the following system of line...

    Text Solution

    |

  2. Let vec(a) = hat(i) + hat(j) + hat(k), vec(b) and vec(c )= hat(j)-hat(...

    Text Solution

    |

  3. If (log)3 2,(log)3(2^x-5)a n d(log)3(2^x-7/2) are in arithmetic progre...

    Text Solution

    |

  4. Find the domain of function f(x)=(log)4[(log)5{(log)3(18 x-x^2-77}]

    Text Solution

    |

  5. Let f(x)= |(sin^(2)x,-2+cos^(2)x,cos2x),(2+sin^(2)x,cos^(2)x,cos2x),(s...

    Text Solution

    |

  6. Let F:[3,5] rarr R be a twice differentiable function on (3,5) such th...

    Text Solution

    |

  7. Let a plane p passes through the point (3,7,-7) and contain the line ,...

    Text Solution

    |

  8. Let S= {1,2,3,4 5,6, 7}. Then the number of possible functions f: S ra...

    Text Solution

    |

  9. If y= y(x), y in [0, (pi)/(2)) is the solution of the differential equ...

    Text Solution

    |

  10. Let f: [0,3] rarr R be defined by f(x)= "min" {x-[x], 1+[x]-x} where [...

    Text Solution

    |

  11. Let vec(a) = hat(i) - alpha hat(j) + beta hat(k) , vec(b) = 3 hat(i) ...

    Text Solution

    |

  12. Find the distance of the point P3,\ 4,\ 4) from the point where the li...

    Text Solution

    |

  13. If the real part of the complex number z = ( 3 + 2 i cos theta)/( 1 -...

    Text Solution

    |

  14. Let E be an ellipse whose axes are parallel to the co-ordinates axes, ...

    Text Solution

    |

  15. If int (0) ^(pi) ( sin ^(3) x) e^(- sin^(2)x)dx = alpha - (beta)/( e)...

    Text Solution

    |

  16. Find number of real roots of equation e^(4x) + e^(3x) - 4e^(2x) + e^(x...

    Text Solution

    |

  17. Let y = y (x) be the solution of the differential equation dy = e^(a...

    Text Solution

    |

  18. Let n be a non - negative integer . Then the number of divisors of the...

    Text Solution

    |

  19. Let A = { n in N | n^(2) le n + 10,000 } B = { 3k + 1 | k in N } and ...

    Text Solution

    |

  20. If A = [(1,1,1),(0,1,1),(0,0,1)] and M = A + A^(2) + A^(3) + . . . . ...

    Text Solution

    |