Home
Class 12
MATHS
If int (0) ^(pi) ( sin ^(3) x) e^(- sin...

If ` int _(0) ^(pi) ( sin ^(3) x) e^(- sin^(2)x)dx = alpha - (beta)/( e) int _(0)^(1) sqrt(t) e^(t) " dt , then " alpha + beta ` is equal to _____

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given integral problem, we will follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int_0^{\pi} \sin^3 x \, e^{-\sin^2 x} \, dx \] We can rewrite \(\sin^3 x\) as \(\sin^2 x \cdot \sin x\): \[ I = \int_0^{\pi} \sin^2 x \cdot \sin x \cdot e^{-\sin^2 x} \, dx \] ### Step 2: Use a Trigonometric Identity Using the identity \(\sin^2 x = 1 - \cos^2 x\), we can express the integral as: \[ I = \int_0^{\pi} (1 - \cos^2 x) \sin x \cdot e^{-\sin^2 x} \, dx \] ### Step 3: Split the Integral We can split the integral into two parts: \[ I = \int_0^{\pi} \sin x \cdot e^{-\sin^2 x} \, dx - \int_0^{\pi} \cos^2 x \cdot \sin x \cdot e^{-\sin^2 x} \, dx \] ### Step 4: Use Symmetry Property Using the property of integrals, we can simplify: \[ \int_0^{\pi} f(x) \, dx = \int_0^{\pi} f(\pi - x) \, dx \] This allows us to express the second integral in terms of \(t = \cos^2 x\). ### Step 5: Change of Variable Let \(t = \cos^2 x\), then \(dt = -2 \cos x \sin x \, dx\). The limits change from \(x=0\) (where \(t=1\)) to \(x=\pi/2\) (where \(t=0\)). Thus, we can rewrite the integral: \[ I = 2 \int_0^{\frac{\pi}{2}} (1 - t) \sin x \cdot e^{-(1 - t)} \, dx \] ### Step 6: Evaluate the Integral Now we need to evaluate: \[ I = 2 \int_0^{1} (1 - t) e^{-(1 - t)} \frac{dt}{\sqrt{t}} \] This can be split into two integrals: \[ I = 2 \left( \int_0^{1} \frac{e^{-(1 - t)}}{\sqrt{t}} dt - \int_0^{1} \frac{t e^{-(1 - t)}}{\sqrt{t}} dt \right) \] ### Step 7: Apply Euler's Integral Using properties of the exponential function and integrating by parts, we can find the values of these integrals. ### Step 8: Final Calculation After evaluating the integrals, we find: \[ I = \frac{2}{e} (2 - 3) \] Thus, we can identify: \[ \alpha = 2, \quad \beta = 3 \] ### Step 9: Find the Sum Finally, we compute: \[ \alpha + \beta = 2 + 3 = 5 \] ### Conclusion The final answer is: \[ \alpha + \beta = 5 \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS 2021

    JEE MAINS PREVIOUS YEAR|Exercise Mathematics Section A|40 Videos
  • JEE MAINS 2021

    JEE MAINS PREVIOUS YEAR|Exercise Mathematics Section B|20 Videos
  • JEE MAINS 2021

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION-A)|80 Videos
  • JEE MAINS 2020

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS|250 Videos
  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION - B)|10 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi) e^(x) sin 2 x dx=

int_ (0) ^ (2000 pi) (1) / (1 + e ^ (sin x)) dx

int_(0)^(pi//2)(e^(sin x))/(e^(sin x)+e^(cos x))dx=

Let F:[3,5] rarr R be a twice differentiable function on (3,5) such that F(x)= e^(-x) int_(3)^(x) (3t^(2)+2t+4F'(t)) dt . If F'(4)= (alpha e^(beta)-224)/((e^(beta)-4)^(2)) , then alpha+beta is equal to _____

If int_(-pi/2)^(pi/2) frac {8 sqrt 2 cos x dx}{(1 e^(sin x)) (1 sin^4 x)} = alpha pi beta log_e(3 2 sqrt 2) , where alpha , beta are integers, then alpha^2 beta^2 equals ___________.

Let beta(n)=int_(0)^(n pi)sqrt(1-sin t)dt. Find the value of beta(2)-beta(1)

int (dx) / (sqrt (sin (x + alpha) cos ^ (3) (x-beta)))

If int_(0)^(x)f(t)dt=e^(x)-ae^(2x)int_(0)^(1)f(t)e^(-t)dt , then

lim_(x rarr0)(3+alpha sin x+beta cos x+log_(e)(1-x))/(3tan^(2)x)=(1)/(3) ,then 2 alpha-beta is equal to

show that (a) int_(0) ^(2pi) sin ^(3) x dx = 0 , (b) int_(-1)^(1) e^(-x^(2)) dx = 2 int_(0)^(1) e^(-x^(2)) dx

JEE MAINS PREVIOUS YEAR-JEE MAINS 2021-MATHEMATICS (SECTION-B)
  1. For real numbers alpha and beta, consider the following system of line...

    Text Solution

    |

  2. Let vec(a) = hat(i) + hat(j) + hat(k), vec(b) and vec(c )= hat(j)-hat(...

    Text Solution

    |

  3. If (log)3 2,(log)3(2^x-5)a n d(log)3(2^x-7/2) are in arithmetic progre...

    Text Solution

    |

  4. Find the domain of function f(x)=(log)4[(log)5{(log)3(18 x-x^2-77}]

    Text Solution

    |

  5. Let f(x)= |(sin^(2)x,-2+cos^(2)x,cos2x),(2+sin^(2)x,cos^(2)x,cos2x),(s...

    Text Solution

    |

  6. Let F:[3,5] rarr R be a twice differentiable function on (3,5) such th...

    Text Solution

    |

  7. Let a plane p passes through the point (3,7,-7) and contain the line ,...

    Text Solution

    |

  8. Let S= {1,2,3,4 5,6, 7}. Then the number of possible functions f: S ra...

    Text Solution

    |

  9. If y= y(x), y in [0, (pi)/(2)) is the solution of the differential equ...

    Text Solution

    |

  10. Let f: [0,3] rarr R be defined by f(x)= "min" {x-[x], 1+[x]-x} where [...

    Text Solution

    |

  11. Let vec(a) = hat(i) - alpha hat(j) + beta hat(k) , vec(b) = 3 hat(i) ...

    Text Solution

    |

  12. Find the distance of the point P3,\ 4,\ 4) from the point where the li...

    Text Solution

    |

  13. If the real part of the complex number z = ( 3 + 2 i cos theta)/( 1 -...

    Text Solution

    |

  14. Let E be an ellipse whose axes are parallel to the co-ordinates axes, ...

    Text Solution

    |

  15. If int (0) ^(pi) ( sin ^(3) x) e^(- sin^(2)x)dx = alpha - (beta)/( e)...

    Text Solution

    |

  16. Find number of real roots of equation e^(4x) + e^(3x) - 4e^(2x) + e^(x...

    Text Solution

    |

  17. Let y = y (x) be the solution of the differential equation dy = e^(a...

    Text Solution

    |

  18. Let n be a non - negative integer . Then the number of divisors of the...

    Text Solution

    |

  19. Let A = { n in N | n^(2) le n + 10,000 } B = { 3k + 1 | k in N } and ...

    Text Solution

    |

  20. If A = [(1,1,1),(0,1,1),(0,0,1)] and M = A + A^(2) + A^(3) + . . . . ...

    Text Solution

    |