Home
Class 12
MATHS
If A = [(1,1,1),(0,1,1),(0,0,1)] and M ...

If A ` = [(1,1,1),(0,1,1),(0,0,1)] and M = A + A^(2) + A^(3) + . . . . + A^(20)` then the sum of all the elements of the matrix M is equal to _____

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to calculate the sum of all elements of the matrix \( M \) defined as: \[ M = A + A^2 + A^3 + \ldots + A^{20} \] where \[ A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \] ### Step 1: Calculate \( A^2 \) To find \( A^2 \), we multiply matrix \( A \) by itself: \[ A^2 = A \cdot A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \] Calculating the elements: - First row: - \( (1 \cdot 1 + 1 \cdot 0 + 1 \cdot 0) = 1 \) - \( (1 \cdot 1 + 1 \cdot 1 + 1 \cdot 0) = 2 \) - \( (1 \cdot 1 + 1 \cdot 1 + 1 \cdot 1) = 3 \) - Second row: - \( (0 \cdot 1 + 1 \cdot 0 + 1 \cdot 0) = 0 \) - \( (0 \cdot 1 + 1 \cdot 1 + 1 \cdot 0) = 1 \) - \( (0 \cdot 1 + 1 \cdot 1 + 1 \cdot 1) = 2 \) - Third row: - \( (0 \cdot 1 + 0 \cdot 0 + 1 \cdot 0) = 0 \) - \( (0 \cdot 1 + 0 \cdot 1 + 1 \cdot 0) = 0 \) - \( (0 \cdot 1 + 0 \cdot 1 + 1 \cdot 1) = 1 \) Thus, \[ A^2 = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix} \] ### Step 2: Calculate \( A^3 \) Now we calculate \( A^3 \): \[ A^3 = A^2 \cdot A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \] Calculating the elements: - First row: - \( (1 \cdot 1 + 2 \cdot 0 + 3 \cdot 0) = 1 \) - \( (1 \cdot 1 + 2 \cdot 1 + 3 \cdot 0) = 3 \) - \( (1 \cdot 1 + 2 \cdot 1 + 3 \cdot 1) = 6 \) - Second row: - \( (0 \cdot 1 + 1 \cdot 0 + 2 \cdot 0) = 0 \) - \( (0 \cdot 1 + 1 \cdot 1 + 2 \cdot 0) = 1 \) - \( (0 \cdot 1 + 1 \cdot 1 + 2 \cdot 1) = 3 \) - Third row: - \( (0 \cdot 1 + 0 \cdot 0 + 1 \cdot 0) = 0 \) - \( (0 \cdot 1 + 0 \cdot 1 + 1 \cdot 0) = 0 \) - \( (0 \cdot 1 + 0 \cdot 1 + 1 \cdot 1) = 1 \) Thus, \[ A^3 = \begin{pmatrix} 1 & 3 & 6 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{pmatrix} \] ### Step 3: Identify the Pattern From the calculations, we can see a pattern forming for \( A^n \): \[ A^n = \begin{pmatrix} 1 & n & \frac{n(n+1)}{2} \\ 0 & 1 & n \\ 0 & 0 & 1 \end{pmatrix} \] ### Step 4: Calculate \( M \) Now we can express \( M \): \[ M = A + A^2 + A^3 + \ldots + A^{20} \] The sum of the elements in \( M \) can be calculated by summing the corresponding elements of \( A^n \): - The first row sums to \( 1 + 1 + 1 + \ldots + 1 = 20 \) - The second row sums to \( 0 + 1 + 2 + \ldots + 20 = 210 \) - The third row sums to \( 0 + 0 + 0 + \ldots + 0 + \frac{20(21)}{2} = 210 \) ### Step 5: Final Calculation The total sum of all elements in \( M \): \[ \text{Sum} = 20 + 210 + 210 = 440 \] Thus, the sum of all the elements of the matrix \( M \) is: \[ \boxed{440} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS 2021

    JEE MAINS PREVIOUS YEAR|Exercise Mathematics Section A|40 Videos
  • JEE MAINS 2021

    JEE MAINS PREVIOUS YEAR|Exercise Mathematics Section B|20 Videos
  • JEE MAINS 2021

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION-A)|80 Videos
  • JEE MAINS 2020

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS|250 Videos
  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION - B)|10 Videos

Similar Questions

Explore conceptually related problems

A=[(1,1,1),(0,1,1),(0,0,1)] , then sum of all elements in A+A^2+A^3+ . . . + A^(26) is

Let A=[(2,0,7),(0,1,0),(1,-2,1)] and B=[(-k,14k,7k),(0,1,0),(k,-4k,-2k)] . If AB=I , where I is an identity matrix of order 3, then the sum of all elements of matrix B is equal to

Let A = [(1,0,0), (2,1,0), (3,2,1)], and U_1, U_2 and U_3 are columns of a 3 xx 3 matrix U . If column matrices U_1, U_2 and U_3 satisfy AU_1 = [(1),(0),(0)], AU_2 = [(2),(3),(0)], AU_3 = [(2),(3),(1)] then the sum of the elements of the matrix U^(-1) is

Let A=[(1,0,0),(1,1,0),(1,1,1)] and B=A^20 . Then the sum of the elements of the first column of B is

If [2-1 1 0-3 4]A=[-1-8-10 1-2-5 9 22 15] , then sum of all the elements of matrix A is 0 b. 1 c. 2 d. -3

If A= [(0,1,1),(0,0,1),(0,0,0)] is a matrix of order 3 then the value of the matrix (I+A)-2A^2(I-A), where I is a unity matrix is equal to (A) [(1,0,0),(1,1,0),(1,1,1)] (B) [(1,-1,-1),(0,1,-1),(0,0,1)] (C) [(1,1,-1),(0,1,1),(0,0,1)] (D) [(0,0,2),(0,0,0),(0,0,0)]

Let A=[(1,1,1),(1,-1,0),(0,1,-1)], A_(1) be a matrix formed by the cofactors of the elements of the matrix A and A_(2) be a matrix formed by the cofactors of the elements of matrix A_(1) . Similarly, If A_(10) be a matrrix formed by the cofactors of the elements of matrix A_(9) , then the value of |A_(10)| is

If A=[(1, 0,0),(0,1,0),(a,b,-1)] and I is the unit matrix of order 3, then A^(2)+2A^(4)+4A^(6) is equal to

If A=[(0,1,2),(1,2,3),(3,1,1)] , then the sum of the all the diagonal entries of A^(-1) is

JEE MAINS PREVIOUS YEAR-JEE MAINS 2021-MATHEMATICS (SECTION-B)
  1. For real numbers alpha and beta, consider the following system of line...

    Text Solution

    |

  2. Let vec(a) = hat(i) + hat(j) + hat(k), vec(b) and vec(c )= hat(j)-hat(...

    Text Solution

    |

  3. If (log)3 2,(log)3(2^x-5)a n d(log)3(2^x-7/2) are in arithmetic progre...

    Text Solution

    |

  4. Find the domain of function f(x)=(log)4[(log)5{(log)3(18 x-x^2-77}]

    Text Solution

    |

  5. Let f(x)= |(sin^(2)x,-2+cos^(2)x,cos2x),(2+sin^(2)x,cos^(2)x,cos2x),(s...

    Text Solution

    |

  6. Let F:[3,5] rarr R be a twice differentiable function on (3,5) such th...

    Text Solution

    |

  7. Let a plane p passes through the point (3,7,-7) and contain the line ,...

    Text Solution

    |

  8. Let S= {1,2,3,4 5,6, 7}. Then the number of possible functions f: S ra...

    Text Solution

    |

  9. If y= y(x), y in [0, (pi)/(2)) is the solution of the differential equ...

    Text Solution

    |

  10. Let f: [0,3] rarr R be defined by f(x)= "min" {x-[x], 1+[x]-x} where [...

    Text Solution

    |

  11. Let vec(a) = hat(i) - alpha hat(j) + beta hat(k) , vec(b) = 3 hat(i) ...

    Text Solution

    |

  12. Find the distance of the point P3,\ 4,\ 4) from the point where the li...

    Text Solution

    |

  13. If the real part of the complex number z = ( 3 + 2 i cos theta)/( 1 -...

    Text Solution

    |

  14. Let E be an ellipse whose axes are parallel to the co-ordinates axes, ...

    Text Solution

    |

  15. If int (0) ^(pi) ( sin ^(3) x) e^(- sin^(2)x)dx = alpha - (beta)/( e)...

    Text Solution

    |

  16. Find number of real roots of equation e^(4x) + e^(3x) - 4e^(2x) + e^(x...

    Text Solution

    |

  17. Let y = y (x) be the solution of the differential equation dy = e^(a...

    Text Solution

    |

  18. Let n be a non - negative integer . Then the number of divisors of the...

    Text Solution

    |

  19. Let A = { n in N | n^(2) le n + 10,000 } B = { 3k + 1 | k in N } and ...

    Text Solution

    |

  20. If A = [(1,1,1),(0,1,1),(0,0,1)] and M = A + A^(2) + A^(3) + . . . . ...

    Text Solution

    |