Home
Class 9
MATHS
(sqrt(x)+sqrt(y))^(2)=x+y+2sqrt(xy) and ...

`(sqrt(x)+sqrt(y))^(2)=x+y+2sqrt(xy)` and `sqrt(x)sqrt(y)=sqrt(xy)` , where `x` and `y` are positive real numbers .
If `a=1+sqrt(2)+sqrt(3)` and `b=1+sqrt(2)-sqrt(3)` , then `a^(2)+b^(2)-2a-2b=`

A

`11`

B

`8`

C

`152`

D

`15`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( a^2 + b^2 - 2a - 2b \) given: - \( a = 1 + \sqrt{2} + \sqrt{3} \) - \( b = 1 + \sqrt{2} - \sqrt{3} \) ### Step 1: Calculate \( a^2 \) First, we will calculate \( a^2 \): \[ a^2 = (1 + \sqrt{2} + \sqrt{3})^2 \] Using the expansion formula \( (x + y + z)^2 = x^2 + y^2 + z^2 + 2xy + 2xz + 2yz \): \[ a^2 = 1^2 + (\sqrt{2})^2 + (\sqrt{3})^2 + 2(1)(\sqrt{2}) + 2(1)(\sqrt{3}) + 2(\sqrt{2})(\sqrt{3}) \] Calculating each term: - \( 1^2 = 1 \) - \( (\sqrt{2})^2 = 2 \) - \( (\sqrt{3})^2 = 3 \) - \( 2(1)(\sqrt{2}) = 2\sqrt{2} \) - \( 2(1)(\sqrt{3}) = 2\sqrt{3} \) - \( 2(\sqrt{2})(\sqrt{3}) = 2\sqrt{6} \) Putting it all together: \[ a^2 = 1 + 2 + 3 + 2\sqrt{2} + 2\sqrt{3} + 2\sqrt{6} = 6 + 2\sqrt{2} + 2\sqrt{3} + 2\sqrt{6} \] ### Step 2: Calculate \( b^2 \) Now, we calculate \( b^2 \): \[ b^2 = (1 + \sqrt{2} - \sqrt{3})^2 \] Using the same expansion formula: \[ b^2 = 1^2 + (\sqrt{2})^2 + (-\sqrt{3})^2 + 2(1)(\sqrt{2}) + 2(1)(-\sqrt{3}) + 2(\sqrt{2})(-\sqrt{3}) \] Calculating each term: - \( 1^2 = 1 \) - \( (\sqrt{2})^2 = 2 \) - \( (-\sqrt{3})^2 = 3 \) - \( 2(1)(\sqrt{2}) = 2\sqrt{2} \) - \( 2(1)(-\sqrt{3}) = -2\sqrt{3} \) - \( 2(\sqrt{2})(-\sqrt{3}) = -2\sqrt{6} \) Putting it all together: \[ b^2 = 1 + 2 + 3 + 2\sqrt{2} - 2\sqrt{3} - 2\sqrt{6} = 6 + 2\sqrt{2} - 2\sqrt{3} - 2\sqrt{6} \] ### Step 3: Calculate \( a^2 + b^2 \) Now we add \( a^2 \) and \( b^2 \): \[ a^2 + b^2 = (6 + 2\sqrt{2} + 2\sqrt{3} + 2\sqrt{6}) + (6 + 2\sqrt{2} - 2\sqrt{3} - 2\sqrt{6}) \] Combining like terms: \[ = 6 + 6 + 2\sqrt{2} + 2\sqrt{2} + 2\sqrt{3} - 2\sqrt{3} + 2\sqrt{6} - 2\sqrt{6} \] This simplifies to: \[ = 12 + 4\sqrt{2} \] ### Step 4: Calculate \( -2a - 2b \) Now we calculate \( -2a - 2b \): \[ -2a = -2(1 + \sqrt{2} + \sqrt{3}) = -2 - 2\sqrt{2} - 2\sqrt{3} \] \[ -2b = -2(1 + \sqrt{2} - \sqrt{3}) = -2 - 2\sqrt{2} + 2\sqrt{3} \] Adding these: \[ -2a - 2b = (-2 - 2\sqrt{2} - 2\sqrt{3}) + (-2 - 2\sqrt{2} + 2\sqrt{3}) = -4 - 4\sqrt{2} \] ### Step 5: Combine Results Now we combine the results from Steps 3 and 4: \[ a^2 + b^2 - 2a - 2b = (12 + 4\sqrt{2}) + (-4 - 4\sqrt{2}) \] This simplifies to: \[ = 12 - 4 + 4\sqrt{2} - 4\sqrt{2} = 8 \] ### Final Answer Thus, the final answer is: \[ \boxed{8} \]
Promotional Banner

Topper's Solved these Questions

  • NUMBER SYSTEMS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (Subjective problems) (Very short answer type)|10 Videos
  • NUMBER SYSTEMS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (Subjective problems) (short answer type)|10 Videos
  • NUMBER SYSTEMS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (Assertion & Reason type)|5 Videos
  • LINES AND ANGLES

    MTG IIT JEE FOUNDATION|Exercise OLYMPIAD/HOTS CORNER|20 Videos
  • POLYNOMIALS

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Corner|20 Videos

Similar Questions

Explore conceptually related problems

(sqrt(x)+sqrt(y))^(2)=x+y+2sqrt(xy) and sqrt(x)sqrt(y)=sqrt(xy) , where x and y are positive real numbers . If x=2sqrt(5)+sqrt(3) and y=2sqrt(5)-sqrt(3) , then x^(4)+y^(4) =

if x=sqrt(3)+(1)/(sqrt(3)) and y=sqrt(3)-(1)/(sqrt(3)) then x^(2)-y^(2) is

Evaluate : ( sqrt(2)x + sqrt(3)y ) ( sqrt(2)x + sqrt(3)y )

If x=(sqrt3-1)/(sqrt3+1) and y=(sqrt3+1)/(sqrt3-1) then x^2-xy+y^2

(2)/(sqrt(x))+(3)/(sqrt(y))=2 and (4)/(sqrt(x))-(9)/(sqrt(y))=-1

If x=3sqrt(5)+2sqrt(2) and y=3sqrt(5)-2sqrt(2) , then the value of (x^(2)-y^(2))^(2) is

sqrt(2)x + sqrt(3)y=0 sqrt(5)x - sqrt(2)y=0

If sqrt(3)x-sqrt(2y)=sqrt(3);sqrt(5)x+sqrt(3)y=sqrt(2) then x and y are

x=(1)/(sqrt(2-sqrt(3))) and y=(1)/(sqrt(2+sqrt(3))) then the value of (x-y)^(2) equals