Home
Class 9
MATHS
For (1)/(asqrt(x)+bsqrt(y)) the rational...

For `(1)/(asqrt(x)+bsqrt(y))` the rationalising factor is a `asqrt(x)-bsqrt(y)` .
If `x=(sqrt(5)+sqrt(3))/(sqrt(80)+sqrt(48)-sqrt(45)-sqrt(27))` then value of `4x^(2)+3x+5` is

A

`15`

B

`2`

C

`12`

D

`5`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, let's break it down: ### Step 1: Simplify the expression for x We are given: \[ x = \frac{\sqrt{5} + \sqrt{3}}{\sqrt{80} + \sqrt{48} - \sqrt{45} - \sqrt{27}} \] First, we simplify the denominator: - Calculate each square root: - \( \sqrt{80} = \sqrt{16 \times 5} = 4\sqrt{5} \) - \( \sqrt{48} = \sqrt{16 \times 3} = 4\sqrt{3} \) - \( \sqrt{45} = \sqrt{9 \times 5} = 3\sqrt{5} \) - \( \sqrt{27} = \sqrt{9 \times 3} = 3\sqrt{3} \) Now substitute these values back into the denominator: \[ \sqrt{80} + \sqrt{48} - \sqrt{45} - \sqrt{27} = 4\sqrt{5} + 4\sqrt{3} - 3\sqrt{5} - 3\sqrt{3} \] ### Step 2: Combine like terms in the denominator Now, combine the like terms: - For \( \sqrt{5} \): \( 4\sqrt{5} - 3\sqrt{5} = 1\sqrt{5} = \sqrt{5} \) - For \( \sqrt{3} \): \( 4\sqrt{3} - 3\sqrt{3} = 1\sqrt{3} = \sqrt{3} \) Thus, the denominator simplifies to: \[ \sqrt{5} + \sqrt{3} \] ### Step 3: Substitute back to find x Now substitute the simplified denominator back into the expression for \( x \): \[ x = \frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} + \sqrt{3}} \] Since the numerator and denominator are the same, we have: \[ x = 1 \] ### Step 4: Substitute x into the equation \( 4x^2 + 3x + 5 \) Now we substitute \( x = 1 \) into the expression \( 4x^2 + 3x + 5 \): \[ 4(1)^2 + 3(1) + 5 \] ### Step 5: Calculate the value Calculating this gives: \[ 4(1) + 3(1) + 5 = 4 + 3 + 5 = 12 \] ### Final Answer Thus, the value of \( 4x^2 + 3x + 5 \) is: \[ \boxed{12} \]
Promotional Banner

Topper's Solved these Questions

  • NUMBER SYSTEMS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (Subjective problems) (Very short answer type)|10 Videos
  • NUMBER SYSTEMS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (Subjective problems) (short answer type)|10 Videos
  • NUMBER SYSTEMS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (Assertion & Reason type)|5 Videos
  • LINES AND ANGLES

    MTG IIT JEE FOUNDATION|Exercise OLYMPIAD/HOTS CORNER|20 Videos
  • POLYNOMIALS

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Corner|20 Videos

Similar Questions

Explore conceptually related problems

Simplify: (sqrt(5)+sqrt(3))/(sqrt(80)+sqrt(48)-sqrt(45)-sqrt(27))

For (1)/(asqrt(x)+bsqrt(y)) the rationalising factor is a asqrt(x)-bsqrt(y) . If x=(1)/(3-2sqrt(2)) and y=(1)/(3+2sqrt(2)) , then value of xy^(2)+x^(2)y is

For (1)/(asqrt(x)+bsqrt(y)) the rationalising factor is a asqrt(x)-bsqrt(y) . If x=(7sqrt(3))/(sqrt(10)+sqrt(3))-(3sqrt(2))/(sqrt(15)+3sqrt(2))-(2sqrt(5))/(sqrt(6)+sqrt(5)) , then value of x^(4)+x^(2) is

If x=(sqrt(5)-sqrt(3))/(sqrt(5)+sqrt(3)),y=(sqrt(5)+sqrt(3))/(sqrt(5)-sqrt(3)) find the value of (x-y)^(2)

If x=(sqrt(5)+sqrt(3))/(sqrt(5)-sqrt(3)), then the value of x^(2)+(1)/(x^(2))

If x=(sqrt(5)-sqrt(2))/(sqrt(5)+sqrt(2)) and y=(sqrt(5)+sqrt(2))/(sqrt(5)-sqrt(2)), find the value of x^(2)-y^(2)

If x = (sqrt(5) + sqrt(3))/(sqrt(5) - sqrt(3)) , find the value of x^(3) + (1)/(x^(3)) .

If x=(sqrt(5)+1)/(sqrt(5)-1) and y=(sqrt(5)-1)/(sqrt(5)+1) find the value of x^(2)+y^(2)

If (3sqrt(5)-6sqrt(7))-(2sqrt(5)-11sqrt(7))=asqrt(5)+bsqrt(7), then find the values of a and b.