Home
Class 9
MATHS
If a^(1//3)+b^(1//3)+c^(1//3)=0 , then s...

If `a^(1//3)+b^(1//3)+c^(1//3)=0` , then show that `(a+b+c)^(3)=27` abc .

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to show that if \( a^{1/3} + b^{1/3} + c^{1/3} = 0 \), then \( (a + b + c)^3 = 27abc \). ### Step-by-Step Solution: 1. **Let \( x = a^{1/3} \), \( y = b^{1/3} \), and \( z = c^{1/3} \)**: \[ x + y + z = 0 \] 2. **Using the identity for the sum of cubes**: The identity states: \[ x^3 + y^3 + z^3 - 3xyz = (x + y + z)(x^2 + y^2 + z^2 - xy - yz - zx) \] Since \( x + y + z = 0 \), we can simplify this to: \[ x^3 + y^3 + z^3 = 3xyz \] 3. **Substituting back for \( x, y, z \)**: We have: \[ a + b + c = x^3 + y^3 + z^3 \] Thus, \[ a + b + c = 3xyz \] where \( x = a^{1/3}, y = b^{1/3}, z = c^{1/3} \). 4. **Cubing both sides**: Now, we need to find \( (a + b + c)^3 \): \[ (a + b + c)^3 = (3xyz)^3 = 27(xyz)^3 \] 5. **Substituting back for \( xyz \)**: Since \( xyz = a^{1/3} b^{1/3} c^{1/3} = (abc)^{1/3} \), we have: \[ (xyz)^3 = abc \] Therefore, \[ (a + b + c)^3 = 27abc \] ### Conclusion: Thus, we have shown that if \( a^{1/3} + b^{1/3} + c^{1/3} = 0 \), then \( (a + b + c)^3 = 27abc \).
Promotional Banner

Topper's Solved these Questions

  • NUMBER SYSTEMS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (Subjective problems) (long answer type)|5 Videos
  • NUMBER SYSTEMS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (Integer Numerical value type)|10 Videos
  • NUMBER SYSTEMS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (Subjective problems) (Very short answer type)|10 Videos
  • LINES AND ANGLES

    MTG IIT JEE FOUNDATION|Exercise OLYMPIAD/HOTS CORNER|20 Videos
  • POLYNOMIALS

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Corner|20 Videos

Similar Questions

Explore conceptually related problems

If sqrt(a-x)+sqrt(b-x)+sqrt(c-x)=0 show that (a+b+c+3x)(a+b+c-x)=4(bc+ca+ ab) and if a^((1)/(3))+b^((1)/(3))+c^(-2)=0 then show that (a+b+c)^(3)=27abc

If a ^(1//3) + b ^(1//3) + c ^(1//3) = 0, then the value of (a + b + c) ^(3) will be:

If a^((1)/(3))+b^((1)/(3))+c^((1)/(3))=0 then (a+b+c)^(3)=

If a^((1)/(3))+b^((1)/(3))+c^((1)/(3))=0, then+ ?(a)a+b+c=0(b)(a+b+c)^(3)=27abc(c)a+b+c=3abc(d)a^(3)+b^(3)+c^(3)=0

If a+b=c , show that a^(3)+b^(3)+3abc=c^(3)

If a + b + c = 0 , show that a^(3) + b^(3) + c^(3) = 3abc The following are the steps involved in showing the above result. Arrange them in sequential order (A) a^(3) + b^(3) + 3ab (-c) = -c^(3) (B) (a + b)^(3) = (-c)^(3) (C) a + b + c = 0 rArr a + b = -c (D) a^(3) + b^(3) + 3ab (a +b) = -c^(3) (E) a^(3) + b^(3) + c^(2) = 3abc