Home
Class 9
MATHS
Find the value of (9^(3//2)-3xx5^(0)-[(1...

Find the value of `(9^(3//2)-3xx5^(0)-[(1)/(81)]^(-1//2))/(((64)/(125))^(-2//3)+(1)/(((256)/(625))^(1//4))+((sqrt(25))/(root(3)(64))))` .

A

`15//13`

B

`0`

C

`16//5`

D

`48//13`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \[ \frac{9^{(3/2)} - 3 \cdot 5^{0} - \left(\frac{1}{81}\right)^{(-1/2)}}{\left(\frac{64}{125}\right)^{-2/3} + \frac{1}{\left(\frac{256}{625}\right)^{(1/4)}} + \left(\frac{\sqrt{25}}{\sqrt[3]{64}}\right)} \] we will break it down step by step. ### Step 1: Simplify the Numerator 1. **Calculate \(9^{(3/2)}\)**: \[ 9^{(3/2)} = (3^2)^{(3/2)} = 3^{(2 \cdot 3/2)} = 3^3 = 27 \] 2. **Calculate \(3 \cdot 5^{0}\)**: \[ 5^{0} = 1 \quad \text{(any number to the power of 0 is 1)} \] \[ 3 \cdot 5^{0} = 3 \cdot 1 = 3 \] 3. **Calculate \(\left(\frac{1}{81}\right)^{(-1/2)}\)**: \[ 81 = 9^2 = (3^2)^2 = 3^4 \Rightarrow \frac{1}{81} = 3^{-4} \] \[ \left(\frac{1}{81}\right)^{(-1/2)} = (3^{-4})^{(-1/2)} = 3^{(4/2)} = 3^2 = 9 \] 4. **Combine the results**: \[ \text{Numerator} = 27 - 3 - 9 = 15 \] ### Step 2: Simplify the Denominator 1. **Calculate \(\left(\frac{64}{125}\right)^{-2/3}\)**: \[ \frac{64}{125} = \left(\frac{4^3}{5^3}\right) \Rightarrow \left(\frac{64}{125}\right)^{-2/3} = \left(\frac{4}{5}\right)^{-2} = \left(\frac{5}{4}\right)^{2} = \frac{25}{16} \] 2. **Calculate \(\frac{1}{\left(\frac{256}{625}\right)^{(1/4)}}\)**: \[ \frac{256}{625} = \left(\frac{16^2}{25^2}\right) \Rightarrow \left(\frac{256}{625}\right)^{(1/4)} = \frac{16^{1/2}}{25^{1/2}} = \frac{4}{5} \] \[ \frac{1}{\left(\frac{256}{625}\right)^{(1/4)}} = \frac{5}{4} \] 3. **Calculate \(\left(\frac{\sqrt{25}}{\sqrt[3]{64}}\right)\)**: \[ \sqrt{25} = 5 \quad \text{and} \quad \sqrt[3]{64} = 4 \] \[ \frac{\sqrt{25}}{\sqrt[3]{64}} = \frac{5}{4} \] 4. **Combine the results**: \[ \text{Denominator} = \frac{25}{16} + \frac{5}{4} + \frac{5}{4} \] Convert \(\frac{5}{4}\) to have a common denominator of 16: \[ \frac{5}{4} = \frac{20}{16} \] So, \[ \text{Denominator} = \frac{25}{16} + \frac{20}{16} + \frac{20}{16} = \frac{25 + 20 + 20}{16} = \frac{65}{16} \] ### Step 3: Combine Numerator and Denominator Now we can write the overall expression: \[ \frac{15}{\frac{65}{16}} = 15 \cdot \frac{16}{65} = \frac{240}{65} = \frac{48}{13} \] ### Final Answer The value of the expression is: \[ \frac{48}{13} \]
Promotional Banner

Topper's Solved these Questions

  • NUMBER SYSTEMS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (Integer Numerical value type)|10 Videos
  • LINES AND ANGLES

    MTG IIT JEE FOUNDATION|Exercise OLYMPIAD/HOTS CORNER|20 Videos
  • POLYNOMIALS

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Corner|20 Videos

Similar Questions

Explore conceptually related problems

9^(3/2)+3xx4^(0)-((1)/(81))^(-1/2)

Find the value of (4)/((216)^(-2//3))-(1)/((256)^(-3//4))

Prove that: ((64)/(125))^(-(2)/(3))+(1)/(((256)/(625))^((1)/(4)))+((sqrt(25))/(643))^(0)=(61)/(16)

Find the value of (64)^(-2//3) xx (frac(1)(4))^-2

Prove that . (i) [8^(-(2)/(3)) xx 2^((1)/(2))xx 25^(-(5)/(4))] div[32^(-(2)/(5)) xx 125 ^(-(5)/(6)) ] = sqrt(2) (ii) ((64)/(125))^(-(2)/(3)) = (1)/(((256)/(625))^((1)/(4)))+ (sqrt(25))/(root3(64)) = (65)/(16) (iii) [7{(81)^((1)/(4)) +(256)^((1)/(4))}^((1)/(4))]^(4) = 16807 .

(64/125)^(-2/3)+(256/625)^(-1/4)+(3/7)^0=

Find the values of :- (1) (8)^(1//3) (2) (64)^(1//2) (3) 4^(5//2) (4) (36)^(3//2) (5) (27)^(2//3)

MTG IIT JEE FOUNDATION-NUMBER SYSTEMS-Olympiad/HOTS Corner
  1. Which of the following statements is incorrect ?

    Text Solution

    |

  2. Find the value of (9^(3//2)-3xx5^(0)-[(1)/(81)]^(-1//2))/(((64)/(125))...

    Text Solution

    |

  3. If x=(sqrt(a+2b)+sqrt(a-2b))/(sqrt(a+2b)-sqrt(a-2b)) then bx^(2)+b =

    Text Solution

    |

  4. The value of sqrt(6+2sqrt(3)+2sqrt(2)+2sqrt(6))-(1)/(sqrt(5-2sqrt(6)))...

    Text Solution

    |

  5. If a=2+sqrt(3)+sqrt(5) and b=3+sqrt(3)-sqrt(5), then a^(2)+b^(2)-4a-6b...

    Text Solution

    |

  6. Find the values of the integers a and b respectively, for which the so...

    Text Solution

    |

  7. The value of expression ((0.6)^(0)-(0.1)^(-1))/(((3)/(2^(3)))^(-1).((3...

    Text Solution

    |

  8. Expressing 0.bar23+0.2bar3 as a single decimal, we get

    Text Solution

    |

  9. If (4sqrt(3)+5sqrt(2))/(sqrt(48)+sqrt(18))=(a+bsqrt(6))/(15) and ((a)/...

    Text Solution

    |

  10. If\ \ sqrt(2^n)=1024 ,\ \ then 3^(2(n/4-4))= 3 (b) 9 (c) 27 (d...

    Text Solution

    |

  11. Express 1-(1)/(1+sqrt(3))+(1)/(1-sqrt(3)) in the form a+bsqrt(3), wher...

    Text Solution

    |

  12. If (3+2sqrt(3))/(3-sqrt(3))=a+sqrt(3)b , then the value of sqrt(a+b) ,...

    Text Solution

    |

  13. Simplify: 2/(sqrt(5)+\ sqrt(3))+1/(sqrt(3)+\ sqrt(2))-3/(sqrt(5)+\ sq...

    Text Solution

    |

  14. What is the value of 2.bar(6)-1.bar(9) ?

    Text Solution

    |

  15. The sum of 0.bar(6) and 0.bar(7) is

    Text Solution

    |

  16. If 2^(x)=4^(y)=8^(z) and ((1)/(2x)+(1)/(4y)+(1)/(6z))=(24)/(7), then f...

    Text Solution

    |

  17. If 3sqrt(3)xx3^(3)-:3^(-3//2)=3^(a+2) , then a =

    Text Solution

    |

  18. Find the value of a and b respectively, if (5+sqrt(3))/(7-4sqrt(3))=47...

    Text Solution

    |

  19. If 2^(x+3)=32 , then what is the value of 3^(6-x) ?

    Text Solution

    |

  20. The numbers 7.478478…. and 1.101001000100001 ….. are

    Text Solution

    |