Home
Class 9
MATHS
Find the value of (9^(3//2)-3xx5^(0)-[(1...

Find the value of `(9^(3//2)-3xx5^(0)-[(1)/(81)]^(-1//2))/(((64)/(125))^(-2//3)+(1)/(((256)/(625))^(1//4))+((sqrt(25))/(root(3)(64))))` .

A

`15//13`

B

`0`

C

`16//5`

D

`48//13`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \[ \frac{9^{(3/2)} - 3 \cdot 5^{0} - \left(\frac{1}{81}\right)^{(-1/2)}}{\left(\frac{64}{125}\right)^{-2/3} + \frac{1}{\left(\frac{256}{625}\right)^{(1/4)}} + \left(\frac{\sqrt{25}}{\sqrt[3]{64}}\right)} \] we will break it down step by step. ### Step 1: Simplify the Numerator 1. **Calculate \(9^{(3/2)}\)**: \[ 9^{(3/2)} = (3^2)^{(3/2)} = 3^{(2 \cdot 3/2)} = 3^3 = 27 \] 2. **Calculate \(3 \cdot 5^{0}\)**: \[ 5^{0} = 1 \quad \text{(any number to the power of 0 is 1)} \] \[ 3 \cdot 5^{0} = 3 \cdot 1 = 3 \] 3. **Calculate \(\left(\frac{1}{81}\right)^{(-1/2)}\)**: \[ 81 = 9^2 = (3^2)^2 = 3^4 \Rightarrow \frac{1}{81} = 3^{-4} \] \[ \left(\frac{1}{81}\right)^{(-1/2)} = (3^{-4})^{(-1/2)} = 3^{(4/2)} = 3^2 = 9 \] 4. **Combine the results**: \[ \text{Numerator} = 27 - 3 - 9 = 15 \] ### Step 2: Simplify the Denominator 1. **Calculate \(\left(\frac{64}{125}\right)^{-2/3}\)**: \[ \frac{64}{125} = \left(\frac{4^3}{5^3}\right) \Rightarrow \left(\frac{64}{125}\right)^{-2/3} = \left(\frac{4}{5}\right)^{-2} = \left(\frac{5}{4}\right)^{2} = \frac{25}{16} \] 2. **Calculate \(\frac{1}{\left(\frac{256}{625}\right)^{(1/4)}}\)**: \[ \frac{256}{625} = \left(\frac{16^2}{25^2}\right) \Rightarrow \left(\frac{256}{625}\right)^{(1/4)} = \frac{16^{1/2}}{25^{1/2}} = \frac{4}{5} \] \[ \frac{1}{\left(\frac{256}{625}\right)^{(1/4)}} = \frac{5}{4} \] 3. **Calculate \(\left(\frac{\sqrt{25}}{\sqrt[3]{64}}\right)\)**: \[ \sqrt{25} = 5 \quad \text{and} \quad \sqrt[3]{64} = 4 \] \[ \frac{\sqrt{25}}{\sqrt[3]{64}} = \frac{5}{4} \] 4. **Combine the results**: \[ \text{Denominator} = \frac{25}{16} + \frac{5}{4} + \frac{5}{4} \] Convert \(\frac{5}{4}\) to have a common denominator of 16: \[ \frac{5}{4} = \frac{20}{16} \] So, \[ \text{Denominator} = \frac{25}{16} + \frac{20}{16} + \frac{20}{16} = \frac{25 + 20 + 20}{16} = \frac{65}{16} \] ### Step 3: Combine Numerator and Denominator Now we can write the overall expression: \[ \frac{15}{\frac{65}{16}} = 15 \cdot \frac{16}{65} = \frac{240}{65} = \frac{48}{13} \] ### Final Answer The value of the expression is: \[ \frac{48}{13} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • NUMBER SYSTEMS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (Integer Numerical value type)|10 Videos
  • LINES AND ANGLES

    MTG IIT JEE FOUNDATION|Exercise OLYMPIAD/HOTS CORNER|20 Videos
  • POLYNOMIALS

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Corner|20 Videos

Similar Questions

Explore conceptually related problems

9^(3/2)+3xx4^(0)-((1)/(81))^(-1/2)

Prove that: ((64)/(125))^(-(2)/(3))+(1)/(((256)/(625))^((1)/(4)))+((sqrt(25))/(643))^(0)=(61)/(16)

Knowledge Check

  • sqrt(225)+root(3)(1/64)= _____

    A
    `15 1/4`
    B
    `15 1/8`
    C
    `15 1/2`
    D
    `15 1/16`
  • Find the value of (4)/((216)^(-2//3))-(1)/((256)^(-3//4))

    A
    `144`
    B
    `64`
    C
    `80`
    D
    `36`
  • Find the value of : ((0.3)^(1//3)(1/27)^(1//4) (9)^(1//6) (0.81)^(2//3))/((0.9)^(2//3) (3)^(-1//2)(243)^(-1//4))

    A
    0.9
    B
    2.7
    C
    0.27
    D
    0.09
  • Similar Questions

    Explore conceptually related problems

    Find the value of (64)^(-2//3) xx (frac(1)(4))^-2

    Prove that . (i) [8^(-(2)/(3)) xx 2^((1)/(2))xx 25^(-(5)/(4))] div[32^(-(2)/(5)) xx 125 ^(-(5)/(6)) ] = sqrt(2) (ii) ((64)/(125))^(-(2)/(3)) = (1)/(((256)/(625))^((1)/(4)))+ (sqrt(25))/(root3(64)) = (65)/(16) (iii) [7{(81)^((1)/(4)) +(256)^((1)/(4))}^((1)/(4))]^(4) = 16807 .

    (64/125)^(-2/3)+(256/625)^(-1/4)+(3/7)^0=

    Find the values of :- (1) (8)^(1//3) (2) (64)^(1//2) (3) 4^(5//2) (4) (36)^(3//2) (5) (27)^(2//3)

    The value of 64^(-(2)/(3))+[(64)^(2/3)]^(1/2) is :