Home
Class 9
MATHS
If x=(sqrt(a+2b)+sqrt(a-2b))/(sqrt(a+2b)...

If `x=(sqrt(a+2b)+sqrt(a-2b))/(sqrt(a+2b)-sqrt(a-2b))` then `bx^(2)+b` =

A

ax

B

`0`

C

`-ax`

D

`-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem given \( x = \frac{\sqrt{a + 2b} + \sqrt{a - 2b}}{\sqrt{a + 2b} - \sqrt{a - 2b}} \) and find \( bx^2 + b \), we will follow these steps: ### Step 1: Rationalize the Denominator We start with the expression for \( x \): \[ x = \frac{\sqrt{a + 2b} + \sqrt{a - 2b}}{\sqrt{a + 2b} - \sqrt{a - 2b}} \] To rationalize the denominator, we multiply the numerator and denominator by the conjugate of the denominator: \[ x = \frac{(\sqrt{a + 2b} + \sqrt{a - 2b})(\sqrt{a + 2b} + \sqrt{a - 2b})}{(\sqrt{a + 2b} - \sqrt{a - 2b})(\sqrt{a + 2b} + \sqrt{a - 2b})} \] ### Step 2: Simplify the Denominator The denominator simplifies using the difference of squares: \[ (\sqrt{a + 2b})^2 - (\sqrt{a - 2b})^2 = (a + 2b) - (a - 2b) = 4b \] ### Step 3: Expand the Numerator Now we expand the numerator: \[ (\sqrt{a + 2b} + \sqrt{a - 2b})^2 = (\sqrt{a + 2b})^2 + 2\sqrt{(a + 2b)(a - 2b)} + (\sqrt{a - 2b})^2 \] This simplifies to: \[ (a + 2b) + (a - 2b) + 2\sqrt{(a + 2b)(a - 2b)} = 2a + 2\sqrt{(a + 2b)(a - 2b)} \] ### Step 4: Combine the Results Now we can write \( x \): \[ x = \frac{2a + 2\sqrt{(a + 2b)(a - 2b)}}{4b} = \frac{a + \sqrt{(a + 2b)(a - 2b)}}{2b} \] ### Step 5: Find \( x^2 \) Next, we need to find \( x^2 \): \[ x^2 = \left(\frac{a + \sqrt{(a + 2b)(a - 2b)}}{2b}\right)^2 = \frac{(a + \sqrt{(a + 2b)(a - 2b)})^2}{4b^2} \] ### Step 6: Expand \( x^2 \) Expanding \( (a + \sqrt{(a + 2b)(a - 2b)})^2 \): \[ x^2 = \frac{a^2 + 2a\sqrt{(a + 2b)(a - 2b)} + (a + 2b)(a - 2b)}{4b^2} \] The term \( (a + 2b)(a - 2b) = a^2 - 4b^2 \), so: \[ x^2 = \frac{a^2 + 2a\sqrt{(a + 2b)(a - 2b)} + a^2 - 4b^2}{4b^2} = \frac{2a^2 - 4b^2 + 2a\sqrt{(a + 2b)(a - 2b)}}{4b^2} \] ### Step 7: Calculate \( bx^2 + b \) Now we compute \( bx^2 + b \): \[ bx^2 + b = b\left(\frac{2a^2 - 4b^2 + 2a\sqrt{(a + 2b)(a - 2b)}}{4b^2}\right) + b \] This simplifies to: \[ = \frac{b(2a^2 - 4b^2 + 2a\sqrt{(a + 2b)(a - 2b)})}{4b^2} + b = \frac{2a^2 - 4b^2 + 2a\sqrt{(a + 2b)(a - 2b)}}{4b} + b \] ### Final Step: Combine Terms Combining the terms gives us: \[ bx^2 + b = \frac{2a^2 - 4b^2 + 2a\sqrt{(a + 2b)(a - 2b)} + 4b^2}{4b} = \frac{2a^2 + 2a\sqrt{(a + 2b)(a - 2b)}}{4b} \] ### Conclusion Thus, the final result is: \[ bx^2 + b = \frac{a(a + \sqrt{(a + 2b)(a - 2b)})}{2b} \]
Promotional Banner

Topper's Solved these Questions

  • NUMBER SYSTEMS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (Integer Numerical value type)|10 Videos
  • LINES AND ANGLES

    MTG IIT JEE FOUNDATION|Exercise OLYMPIAD/HOTS CORNER|20 Videos
  • POLYNOMIALS

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Corner|20 Videos

Similar Questions

Explore conceptually related problems

If x=(sqrt(a+2b)+sqrt(a-2b))/(sqrt(a+2b) -sqrt(a-2b)) then bx^(2)-ax+b is equal to (given that b ne 0 )

Ifx=(sqrt(a+2b)+sqrt(a-2b))/(sqrt(a+2b)-sqrt(a-2b)), thenprovetbx ^(2)-ax+b=0

If x=(sqrt(a+2b)-sqrt(a-2b))/(sqrt((a+2b))+sqrt((a-2b))) , show that bx^(2)-ax+b=0

(4+sqrt(2))/(2+sqrt(2))=a-sqrt(b)

x = ( sqrt ( a + b ) - sqrt (a -b ))/( sqrt (a +b ) + sqrt (a -b )), then what is bx ^(2) - 2ax + b equal to (b ne 0) ?

If x = (sqrt(2a + 3b)+sqrt(2a - 3b))/(sqrt(2a + 3b) - sqrt(2a - 3b)) , show that 3bx^(2) - 4ax + 3b = 0 .

(1+sqrt(2))/(3-2sqrt(2))=A sqrt(2)+B

MTG IIT JEE FOUNDATION-NUMBER SYSTEMS-Olympiad/HOTS Corner
  1. Which of the following statements is incorrect ?

    Text Solution

    |

  2. Find the value of (9^(3//2)-3xx5^(0)-[(1)/(81)]^(-1//2))/(((64)/(125))...

    Text Solution

    |

  3. If x=(sqrt(a+2b)+sqrt(a-2b))/(sqrt(a+2b)-sqrt(a-2b)) then bx^(2)+b =

    Text Solution

    |

  4. The value of sqrt(6+2sqrt(3)+2sqrt(2)+2sqrt(6))-(1)/(sqrt(5-2sqrt(6)))...

    Text Solution

    |

  5. If a=2+sqrt(3)+sqrt(5) and b=3+sqrt(3)-sqrt(5), then a^(2)+b^(2)-4a-6b...

    Text Solution

    |

  6. Find the values of the integers a and b respectively, for which the so...

    Text Solution

    |

  7. The value of expression ((0.6)^(0)-(0.1)^(-1))/(((3)/(2^(3)))^(-1).((3...

    Text Solution

    |

  8. Expressing 0.bar23+0.2bar3 as a single decimal, we get

    Text Solution

    |

  9. If (4sqrt(3)+5sqrt(2))/(sqrt(48)+sqrt(18))=(a+bsqrt(6))/(15) and ((a)/...

    Text Solution

    |

  10. If\ \ sqrt(2^n)=1024 ,\ \ then 3^(2(n/4-4))= 3 (b) 9 (c) 27 (d...

    Text Solution

    |

  11. Express 1-(1)/(1+sqrt(3))+(1)/(1-sqrt(3)) in the form a+bsqrt(3), wher...

    Text Solution

    |

  12. If (3+2sqrt(3))/(3-sqrt(3))=a+sqrt(3)b , then the value of sqrt(a+b) ,...

    Text Solution

    |

  13. Simplify: 2/(sqrt(5)+\ sqrt(3))+1/(sqrt(3)+\ sqrt(2))-3/(sqrt(5)+\ sq...

    Text Solution

    |

  14. What is the value of 2.bar(6)-1.bar(9) ?

    Text Solution

    |

  15. The sum of 0.bar(6) and 0.bar(7) is

    Text Solution

    |

  16. If 2^(x)=4^(y)=8^(z) and ((1)/(2x)+(1)/(4y)+(1)/(6z))=(24)/(7), then f...

    Text Solution

    |

  17. If 3sqrt(3)xx3^(3)-:3^(-3//2)=3^(a+2) , then a =

    Text Solution

    |

  18. Find the value of a and b respectively, if (5+sqrt(3))/(7-4sqrt(3))=47...

    Text Solution

    |

  19. If 2^(x+3)=32 , then what is the value of 3^(6-x) ?

    Text Solution

    |

  20. The numbers 7.478478…. and 1.101001000100001 ….. are

    Text Solution

    |