Home
Class 9
MATHS
The value of sqrt(6+2sqrt(3)+2sqrt(2)+2s...

The value of `sqrt(6+2sqrt(3)+2sqrt(2)+2sqrt(6))-(1)/(sqrt(5-2sqrt(6)))` is

A

`2`

B

`-1`

C

`sqrt(3)+sqrt(2)`

D

`1`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \(\sqrt{6 + 2\sqrt{3} + 2\sqrt{2} + 2\sqrt{6}} - \frac{1}{\sqrt{5 - 2\sqrt{6}}}\), follow these steps: ### Step 1: Simplify the Square Root Expression Consider the expression inside the square root: \(6 + 2\sqrt{3} + 2\sqrt{2} + 2\sqrt{6}\). Notice that: \[ 6 = 1 + 2 + 3 \] So, rewrite the expression as: \[ 6 + 2\sqrt{3} + 2\sqrt{2} + 2\sqrt{6} = 1 + 2 + 3 + 2\sqrt{3} + 2\sqrt{2} + 2\sqrt{6} \] This can be recognized as the expansion of: \[ (1 + \sqrt{3} + \sqrt{2})^2 \] ### Step 2: Verify the Identity Expand \((1 + \sqrt{3} + \sqrt{2})^2\): \[ (1 + \sqrt{3} + \sqrt{2})^2 = 1^2 + (\sqrt{3})^2 + (\sqrt{2})^2 + 2 \cdot 1 \cdot \sqrt{3} + 2 \cdot 1 \cdot \sqrt{2} + 2 \cdot \sqrt{3} \cdot \sqrt{2} \] \[ = 1 + 3 + 2 + 2\sqrt{3} + 2\sqrt{2} + 2\sqrt{6} \] \[ = 6 + 2\sqrt{3} + 2\sqrt{2} + 2\sqrt{6} \] Thus: \[ \sqrt{6 + 2\sqrt{3} + 2\sqrt{2} + 2\sqrt{6}} = 1 + \sqrt{3} + \sqrt{2} \] ### Step 3: Simplify the Denominator Consider the denominator: \(\sqrt{5 - 2\sqrt{6}}\). Recognize that: \[ 5 - 2\sqrt{6} = (\sqrt{2} - \sqrt{3})^2 \] ### Step 4: Verify the Identity Expand \((\sqrt{2} - \sqrt{3})^2\): \[ (\sqrt{2} - \sqrt{3})^2 = (\sqrt{2})^2 + (\sqrt{3})^2 - 2 \cdot \sqrt{2} \cdot \sqrt{3} \] \[ = 2 + 3 - 2\sqrt{6} \] \[ = 5 - 2\sqrt{6} \] Thus: \[ \sqrt{5 - 2\sqrt{6}} = \sqrt{2} - \sqrt{3} \] ### Step 5: Substitute and Simplify Now substitute back into the original expression: \[ 1 + \sqrt{3} + \sqrt{2} - \frac{1}{\sqrt{2} - \sqrt{3}} \] Rationalize the denominator: \[ \frac{1}{\sqrt{2} - \sqrt{3}} \cdot \frac{\sqrt{2} + \sqrt{3}}{\sqrt{2} + \sqrt{3}} = \frac{\sqrt{2} + \sqrt{3}}{(\sqrt{2})^2 - (\sqrt{3})^2} = \frac{\sqrt{2} + \sqrt{3}}{2 - 3} = -(\sqrt{2} + \sqrt{3}) \] Thus: \[ 1 + \sqrt{3} + \sqrt{2} - (-(\sqrt{2} + \sqrt{3})) = 1 + \sqrt{3} + \sqrt{2} + \sqrt{2} + \sqrt{3} \] \[ = 1 + 2\sqrt{3} + 2\sqrt{2} \] So, the value of the given expression is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • NUMBER SYSTEMS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (Integer Numerical value type)|10 Videos
  • LINES AND ANGLES

    MTG IIT JEE FOUNDATION|Exercise OLYMPIAD/HOTS CORNER|20 Videos
  • POLYNOMIALS

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Corner|20 Videos

Similar Questions

Explore conceptually related problems

Value of sqrt(5+2sqrt(6))-1/(sqrt(5+2sqrt(6))) is

The value of sqrt(5+2sqrt(6))-(1)/(sqrt(5+2sqrt(6))) is

If sqrt(5)=2.236 and sqrt(6)=2.449, then the value of (1+sqrt(2))/(sqrt(5)+sqrt(3))+(1-sqrt(2))/(sqrt(5)-sqrt(3)) is

(sqrt(2))/(sqrt(6)-sqrt(2))-(sqrt(3))/(sqrt(6)+sqrt(2))

The value of 5sqrt(3) + 7sqrt(2) - sqrt(6) - 23/(sqrt(2) + sqrt(3) + sqrt(6)) is:

The value of (6sqrt(27)-sqrt(6(3)/(4)))^(2)+(2(sqrt(2)+sqrt(6)))/(3sqrt(2+sqrt(3))) is

MTG IIT JEE FOUNDATION-NUMBER SYSTEMS-Olympiad/HOTS Corner
  1. Which of the following statements is incorrect ?

    Text Solution

    |

  2. Find the value of (9^(3//2)-3xx5^(0)-[(1)/(81)]^(-1//2))/(((64)/(125))...

    Text Solution

    |

  3. If x=(sqrt(a+2b)+sqrt(a-2b))/(sqrt(a+2b)-sqrt(a-2b)) then bx^(2)+b =

    Text Solution

    |

  4. The value of sqrt(6+2sqrt(3)+2sqrt(2)+2sqrt(6))-(1)/(sqrt(5-2sqrt(6)))...

    Text Solution

    |

  5. If a=2+sqrt(3)+sqrt(5) and b=3+sqrt(3)-sqrt(5), then a^(2)+b^(2)-4a-6b...

    Text Solution

    |

  6. Find the values of the integers a and b respectively, for which the so...

    Text Solution

    |

  7. The value of expression ((0.6)^(0)-(0.1)^(-1))/(((3)/(2^(3)))^(-1).((3...

    Text Solution

    |

  8. Expressing 0.bar23+0.2bar3 as a single decimal, we get

    Text Solution

    |

  9. If (4sqrt(3)+5sqrt(2))/(sqrt(48)+sqrt(18))=(a+bsqrt(6))/(15) and ((a)/...

    Text Solution

    |

  10. If\ \ sqrt(2^n)=1024 ,\ \ then 3^(2(n/4-4))= 3 (b) 9 (c) 27 (d...

    Text Solution

    |

  11. Express 1-(1)/(1+sqrt(3))+(1)/(1-sqrt(3)) in the form a+bsqrt(3), wher...

    Text Solution

    |

  12. If (3+2sqrt(3))/(3-sqrt(3))=a+sqrt(3)b , then the value of sqrt(a+b) ,...

    Text Solution

    |

  13. Simplify: 2/(sqrt(5)+\ sqrt(3))+1/(sqrt(3)+\ sqrt(2))-3/(sqrt(5)+\ sq...

    Text Solution

    |

  14. What is the value of 2.bar(6)-1.bar(9) ?

    Text Solution

    |

  15. The sum of 0.bar(6) and 0.bar(7) is

    Text Solution

    |

  16. If 2^(x)=4^(y)=8^(z) and ((1)/(2x)+(1)/(4y)+(1)/(6z))=(24)/(7), then f...

    Text Solution

    |

  17. If 3sqrt(3)xx3^(3)-:3^(-3//2)=3^(a+2) , then a =

    Text Solution

    |

  18. Find the value of a and b respectively, if (5+sqrt(3))/(7-4sqrt(3))=47...

    Text Solution

    |

  19. If 2^(x+3)=32 , then what is the value of 3^(6-x) ?

    Text Solution

    |

  20. The numbers 7.478478…. and 1.101001000100001 ….. are

    Text Solution

    |