Home
Class 9
MATHS
If a=2+sqrt(3)+sqrt(5) and b=3+sqrt(3)-s...

If `a=2+sqrt(3)+sqrt(5)` and `b=3+sqrt(3)-sqrt(5)`, then `a^(2)+b^(2)-4a-6b-3` is equal to

A

`2`

B

`-1`

C

`1`

D

`0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( a^2 + b^2 - 4a - 6b - 3 \) given \( a = 2 + \sqrt{3} + \sqrt{5} \) and \( b = 3 + \sqrt{3} - \sqrt{5} \), we will follow these steps: ### Step 1: Calculate \( a^2 \) Using the formula \( (x + y + z)^2 = x^2 + y^2 + z^2 + 2(xy + xz + yz) \), we can expand \( a^2 \). Let: - \( x = 2 \) - \( y = \sqrt{3} \) - \( z = \sqrt{5} \) Then: \[ a^2 = (2 + \sqrt{3} + \sqrt{5})^2 = 2^2 + (\sqrt{3})^2 + (\sqrt{5})^2 + 2(2\sqrt{3} + 2\sqrt{5} + \sqrt{3}\sqrt{5}) \] Calculating each term: \[ = 4 + 3 + 5 + 2(2\sqrt{3} + 2\sqrt{5} + \sqrt{15}) \] \[ = 12 + 4\sqrt{3} + 4\sqrt{5} + 2\sqrt{15} \] ### Step 2: Calculate \( b^2 \) Using the same expansion method for \( b \): \[ b^2 = (3 + \sqrt{3} - \sqrt{5})^2 = 3^2 + (\sqrt{3})^2 + (-\sqrt{5})^2 + 2(3\sqrt{3} - 3\sqrt{5} + \sqrt{3}(-\sqrt{5})) \] Calculating each term: \[ = 9 + 3 + 5 + 2(3\sqrt{3} - 3\sqrt{5} - \sqrt{15}) \] \[ = 17 + 6\sqrt{3} - 6\sqrt{5} - 2\sqrt{15} \] ### Step 3: Combine \( a^2 \) and \( b^2 \) Now we add \( a^2 \) and \( b^2 \): \[ a^2 + b^2 = (12 + 4\sqrt{3} + 4\sqrt{5} + 2\sqrt{15}) + (17 + 6\sqrt{3} - 6\sqrt{5} - 2\sqrt{15}) \] Combining like terms: \[ = 29 + (4\sqrt{3} + 6\sqrt{3}) + (4\sqrt{5} - 6\sqrt{5}) + (2\sqrt{15} - 2\sqrt{15}) \] \[ = 29 + 10\sqrt{3} - 2\sqrt{5} \] ### Step 4: Calculate \( 4a \) and \( 6b \) Now we calculate \( 4a \) and \( 6b \): \[ 4a = 4(2 + \sqrt{3} + \sqrt{5}) = 8 + 4\sqrt{3} + 4\sqrt{5} \] \[ 6b = 6(3 + \sqrt{3} - \sqrt{5}) = 18 + 6\sqrt{3} - 6\sqrt{5} \] ### Step 5: Combine \( -4a - 6b \) Now we compute \( -4a - 6b \): \[ -4a - 6b = -(8 + 4\sqrt{3} + 4\sqrt{5}) - (18 + 6\sqrt{3} - 6\sqrt{5}) \] \[ = -8 - 4\sqrt{3} - 4\sqrt{5} - 18 - 6\sqrt{3} + 6\sqrt{5} \] Combining like terms: \[ = -26 - (4\sqrt{3} + 6\sqrt{3}) + (6\sqrt{5} - 4\sqrt{5}) \] \[ = -26 - 10\sqrt{3} + 2\sqrt{5} \] ### Step 6: Combine everything Now we combine everything to find \( a^2 + b^2 - 4a - 6b - 3 \): \[ = (29 + 10\sqrt{3} - 2\sqrt{5}) + (-26 - 10\sqrt{3} + 2\sqrt{5}) - 3 \] \[ = 29 - 26 - 3 + (10\sqrt{3} - 10\sqrt{3}) + (-2\sqrt{5} + 2\sqrt{5}) \] \[ = 0 \] ### Final Answer Thus, the value of \( a^2 + b^2 - 4a - 6b - 3 \) is \( \boxed{0} \).
Promotional Banner

Topper's Solved these Questions

  • NUMBER SYSTEMS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (Integer Numerical value type)|10 Videos
  • LINES AND ANGLES

    MTG IIT JEE FOUNDATION|Exercise OLYMPIAD/HOTS CORNER|20 Videos
  • POLYNOMIALS

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Corner|20 Videos

Similar Questions

Explore conceptually related problems

(5+2sqrt(3))/(7+4sqrt(3))=a-b sqrt(3)

(5+2sqrt(3))/(7+4sqrt(3))=a-b sqrt(3)

If a=(3-sqrt(5))/(3+sqrt(5)) and b=(3+sqrt(5))/(3-sqrt(5)) ,find the value of a^(2)+b^(2)

(2sqrt(6))/(sqrt(2)+sqrt(3)+sqrt(5)) equals

If a=(2+ sqrt3)/(2- sqrt3) and b=(2- sqrt3)/(2+sqrt3) , then the value of a^2+b^2+ab is: यदि a=(2+ sqrt3)/(2- sqrt3) और b=(2- sqrt3)/(2+sqrt3) , तो a^2+b^2+ab का मान:

If a=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) and b=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)) then find a^(2)+b^(2)-5ab

find a and b (6)/(sqrt(3)-sqrt(2))=a sqrt(3)-b sqrt(2)

MTG IIT JEE FOUNDATION-NUMBER SYSTEMS-Olympiad/HOTS Corner
  1. Which of the following statements is incorrect ?

    Text Solution

    |

  2. Find the value of (9^(3//2)-3xx5^(0)-[(1)/(81)]^(-1//2))/(((64)/(125))...

    Text Solution

    |

  3. If x=(sqrt(a+2b)+sqrt(a-2b))/(sqrt(a+2b)-sqrt(a-2b)) then bx^(2)+b =

    Text Solution

    |

  4. The value of sqrt(6+2sqrt(3)+2sqrt(2)+2sqrt(6))-(1)/(sqrt(5-2sqrt(6)))...

    Text Solution

    |

  5. If a=2+sqrt(3)+sqrt(5) and b=3+sqrt(3)-sqrt(5), then a^(2)+b^(2)-4a-6b...

    Text Solution

    |

  6. Find the values of the integers a and b respectively, for which the so...

    Text Solution

    |

  7. The value of expression ((0.6)^(0)-(0.1)^(-1))/(((3)/(2^(3)))^(-1).((3...

    Text Solution

    |

  8. Expressing 0.bar23+0.2bar3 as a single decimal, we get

    Text Solution

    |

  9. If (4sqrt(3)+5sqrt(2))/(sqrt(48)+sqrt(18))=(a+bsqrt(6))/(15) and ((a)/...

    Text Solution

    |

  10. If\ \ sqrt(2^n)=1024 ,\ \ then 3^(2(n/4-4))= 3 (b) 9 (c) 27 (d...

    Text Solution

    |

  11. Express 1-(1)/(1+sqrt(3))+(1)/(1-sqrt(3)) in the form a+bsqrt(3), wher...

    Text Solution

    |

  12. If (3+2sqrt(3))/(3-sqrt(3))=a+sqrt(3)b , then the value of sqrt(a+b) ,...

    Text Solution

    |

  13. Simplify: 2/(sqrt(5)+\ sqrt(3))+1/(sqrt(3)+\ sqrt(2))-3/(sqrt(5)+\ sq...

    Text Solution

    |

  14. What is the value of 2.bar(6)-1.bar(9) ?

    Text Solution

    |

  15. The sum of 0.bar(6) and 0.bar(7) is

    Text Solution

    |

  16. If 2^(x)=4^(y)=8^(z) and ((1)/(2x)+(1)/(4y)+(1)/(6z))=(24)/(7), then f...

    Text Solution

    |

  17. If 3sqrt(3)xx3^(3)-:3^(-3//2)=3^(a+2) , then a =

    Text Solution

    |

  18. Find the value of a and b respectively, if (5+sqrt(3))/(7-4sqrt(3))=47...

    Text Solution

    |

  19. If 2^(x+3)=32 , then what is the value of 3^(6-x) ?

    Text Solution

    |

  20. The numbers 7.478478…. and 1.101001000100001 ….. are

    Text Solution

    |