Home
Class 9
MATHS
Find the values of the integers a and b ...

Find the values of the integers a and b respectively, for which the solution of the equation `xsqrt(24)=xsqrt(3)+sqrt(6)` is `(a+sqrt(b))/(7)` .

A

`4,2`

B

`2,6`

C

`3,2`

D

`9,5`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x \sqrt{24} = x \sqrt{3} + \sqrt{6} \) and find the values of integers \( a \) and \( b \) such that the solution can be expressed as \( \frac{a + \sqrt{b}}{7} \), we will follow these steps: ### Step 1: Rearranging the Equation Start with the given equation: \[ x \sqrt{24} = x \sqrt{3} + \sqrt{6} \] Rearranging gives: \[ x \sqrt{24} - x \sqrt{3} = \sqrt{6} \] Factoring out \( x \): \[ x (\sqrt{24} - \sqrt{3}) = \sqrt{6} \] ### Step 2: Solving for \( x \) Now, isolate \( x \): \[ x = \frac{\sqrt{6}}{\sqrt{24} - \sqrt{3}} \] ### Step 3: Simplifying the Denominator Next, simplify \( \sqrt{24} \): \[ \sqrt{24} = \sqrt{4 \cdot 6} = 2\sqrt{6} \] Substituting this back into the equation gives: \[ x = \frac{\sqrt{6}}{2\sqrt{6} - \sqrt{3}} \] ### Step 4: Rationalizing the Denominator To rationalize the denominator, multiply the numerator and denominator by the conjugate \( 2\sqrt{6} + \sqrt{3} \): \[ x = \frac{\sqrt{6}(2\sqrt{6} + \sqrt{3})}{(2\sqrt{6} - \sqrt{3})(2\sqrt{6} + \sqrt{3})} \] ### Step 5: Calculating the Denominator Using the difference of squares: \[ (2\sqrt{6})^2 - (\sqrt{3})^2 = 24 - 3 = 21 \] Thus, the denominator simplifies to 21. ### Step 6: Calculating the Numerator Now, calculate the numerator: \[ \sqrt{6}(2\sqrt{6} + \sqrt{3}) = 2 \cdot 6 + \sqrt{18} = 12 + 3\sqrt{2} \] So, we have: \[ x = \frac{12 + 3\sqrt{2}}{21} \] ### Step 7: Expressing in the Required Form Now, we can express \( x \) as: \[ x = \frac{12}{21} + \frac{3\sqrt{2}}{21} = \frac{4}{7} + \frac{\sqrt{2}}{7} \] This can be rewritten as: \[ x = \frac{4 + \sqrt{2}}{7} \] ### Step 8: Identifying \( a \) and \( b \) From the expression \( \frac{a + \sqrt{b}}{7} \), we can identify: - \( a = 4 \) - \( b = 2 \) ### Final Answer Thus, the values of the integers \( a \) and \( b \) are: \[ \boxed{4} \quad \text{and} \quad \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • NUMBER SYSTEMS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (Integer Numerical value type)|10 Videos
  • LINES AND ANGLES

    MTG IIT JEE FOUNDATION|Exercise OLYMPIAD/HOTS CORNER|20 Videos
  • POLYNOMIALS

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Corner|20 Videos

Similar Questions

Explore conceptually related problems

Evaluate ( sqrt(24) + sqrt(6) )/( sqrt(24) - sqrt(6))

Find the values of a and b if (6)/(3sqrt(2)-2sqrt(3))=a sqrt(2)-b sqrt(3)

If both a and b are rational numbers,find the values of a and b in each of the following equalities :(sqrt(3)-1)/(sqrt(3)+1)=a+b sqrt(3)( ii) (3+sqrt(7))/(3-sqrt(7))=a+b sqrt(7)(5+2sqrt(3))/(7+4sqrt(3))=a+b sqrt(3)( iv) (5+sqrt(3))/(7-sqrt(3))=47a+sqrt(3)b(sqrt(5)+sqrt(3))/(sqrt(5)-sqrt(3))=a+b sqrt(15) (iv) (sqrt(2)+sqrt(3))/(3sqrt(2)-2sqrt(3))=1-b sqrt(3)

If both a and b are rational numbers;find the values of a and b in each of the following equalities ( i (sqrt(3)-1)/(sqrt(3)+1)=a+b sqrt(3)( ii) (5+2sqrt(3))/(7+4sqrt(3))=a+b sqrt(3)

Find the value of a and b respectively, if (5+sqrt(3))/(7-4sqrt(3))=47a+sqrt(3)b .

find a and b (6)/(sqrt(3)-sqrt(2))=a sqrt(3)-b sqrt(2)

The value of (3+sqrt(2))(3-sqrt(2)) is: (a) 0 (b) 6 (c) 9 (d) 7

MTG IIT JEE FOUNDATION-NUMBER SYSTEMS-Olympiad/HOTS Corner
  1. Which of the following statements is incorrect ?

    Text Solution

    |

  2. Find the value of (9^(3//2)-3xx5^(0)-[(1)/(81)]^(-1//2))/(((64)/(125))...

    Text Solution

    |

  3. If x=(sqrt(a+2b)+sqrt(a-2b))/(sqrt(a+2b)-sqrt(a-2b)) then bx^(2)+b =

    Text Solution

    |

  4. The value of sqrt(6+2sqrt(3)+2sqrt(2)+2sqrt(6))-(1)/(sqrt(5-2sqrt(6)))...

    Text Solution

    |

  5. If a=2+sqrt(3)+sqrt(5) and b=3+sqrt(3)-sqrt(5), then a^(2)+b^(2)-4a-6b...

    Text Solution

    |

  6. Find the values of the integers a and b respectively, for which the so...

    Text Solution

    |

  7. The value of expression ((0.6)^(0)-(0.1)^(-1))/(((3)/(2^(3)))^(-1).((3...

    Text Solution

    |

  8. Expressing 0.bar23+0.2bar3 as a single decimal, we get

    Text Solution

    |

  9. If (4sqrt(3)+5sqrt(2))/(sqrt(48)+sqrt(18))=(a+bsqrt(6))/(15) and ((a)/...

    Text Solution

    |

  10. If\ \ sqrt(2^n)=1024 ,\ \ then 3^(2(n/4-4))= 3 (b) 9 (c) 27 (d...

    Text Solution

    |

  11. Express 1-(1)/(1+sqrt(3))+(1)/(1-sqrt(3)) in the form a+bsqrt(3), wher...

    Text Solution

    |

  12. If (3+2sqrt(3))/(3-sqrt(3))=a+sqrt(3)b , then the value of sqrt(a+b) ,...

    Text Solution

    |

  13. Simplify: 2/(sqrt(5)+\ sqrt(3))+1/(sqrt(3)+\ sqrt(2))-3/(sqrt(5)+\ sq...

    Text Solution

    |

  14. What is the value of 2.bar(6)-1.bar(9) ?

    Text Solution

    |

  15. The sum of 0.bar(6) and 0.bar(7) is

    Text Solution

    |

  16. If 2^(x)=4^(y)=8^(z) and ((1)/(2x)+(1)/(4y)+(1)/(6z))=(24)/(7), then f...

    Text Solution

    |

  17. If 3sqrt(3)xx3^(3)-:3^(-3//2)=3^(a+2) , then a =

    Text Solution

    |

  18. Find the value of a and b respectively, if (5+sqrt(3))/(7-4sqrt(3))=47...

    Text Solution

    |

  19. If 2^(x+3)=32 , then what is the value of 3^(6-x) ?

    Text Solution

    |

  20. The numbers 7.478478…. and 1.101001000100001 ….. are

    Text Solution

    |