Home
Class 9
MATHS
If (4sqrt(3)+5sqrt(2))/(sqrt(48)+sqrt(18...

If `(4sqrt(3)+5sqrt(2))/(sqrt(48)+sqrt(18))=(a+bsqrt(6))/(15)` and `((a)/(b))^(x)((b)/(a))^(2x)=(64)/(729)` , then find `x` .

A

`3`

B

`2`

C

`1`

D

`4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem step by step, we will break it down into two parts as per the equations provided. ### Step 1: Simplifying the Left-Hand Side (LHS) We start with the equation: \[ \frac{4\sqrt{3} + 5\sqrt{2}}{\sqrt{48} + \sqrt{18}} = \frac{a + b\sqrt{6}}{15} \] **1. Simplify the denominator:** - \(\sqrt{48} = \sqrt{16 \times 3} = 4\sqrt{3}\) - \(\sqrt{18} = \sqrt{9 \times 2} = 3\sqrt{2}\) Thus, the denominator becomes: \[ \sqrt{48} + \sqrt{18} = 4\sqrt{3} + 3\sqrt{2} \] **2. Rationalize the LHS:** We multiply the numerator and denominator by the conjugate of the denominator: \[ \frac{(4\sqrt{3} + 5\sqrt{2})(4\sqrt{3} - 3\sqrt{2})}{(4\sqrt{3} + 3\sqrt{2})(4\sqrt{3} - 3\sqrt{2})} \] **3. Calculate the denominator:** Using the identity \( (a + b)(a - b) = a^2 - b^2 \): - \(a = 4\sqrt{3}\) and \(b = 3\sqrt{2}\) - \(a^2 = (4\sqrt{3})^2 = 48\) - \(b^2 = (3\sqrt{2})^2 = 18\) Thus, the denominator becomes: \[ 48 - 18 = 30 \] **4. Calculate the numerator:** Using distributive property: \[ (4\sqrt{3})(4\sqrt{3}) - (4\sqrt{3})(3\sqrt{2}) + (5\sqrt{2})(4\sqrt{3}) - (5\sqrt{2})(3\sqrt{2}) \] Calculating each term: - \(16 \cdot 3 = 48\) - \(-12\sqrt{6}\) - \(20\sqrt{6}\) - \(-15\) Combining these gives: \[ 48 - 15 + (20 - 12)\sqrt{6} = 33 + 8\sqrt{6} \] So the LHS becomes: \[ \frac{33 + 8\sqrt{6}}{30} \] ### Step 2: Setting Equal to the Right-Hand Side (RHS) Now we equate: \[ \frac{33 + 8\sqrt{6}}{30} = \frac{a + b\sqrt{6}}{15} \] Cross-multiplying gives: \[ 2(33 + 8\sqrt{6}) = a + b\sqrt{6} \] From this, we can identify: - \(a = 66\) - \(b = 16\) ### Step 3: Solving the Second Equation Now we use the second equation: \[ \left(\frac{a}{b}\right)^x \left(\frac{b}{a}\right)^{2x} = \frac{64}{729} \] Substituting \(a = 66\) and \(b = 16\): \[ \left(\frac{66}{16}\right)^x \left(\frac{16}{66}\right)^{2x} = \frac{64}{729} \] This simplifies to: \[ \left(\frac{66}{16}\right)^x \cdot \left(\frac{16^2}{66^2}\right)^x = \frac{64}{729} \] Combining the exponents: \[ \left(\frac{66}{16}\right)^{x - 2x} = \frac{64}{729} \] Thus: \[ \left(\frac{66}{16}\right)^{-x} = \frac{64}{729} \] Taking the reciprocal gives: \[ \left(\frac{16}{66}\right)^{x} = \frac{64}{729} \] ### Step 4: Expressing in Powers Recognizing \(64 = 4^3\) and \(729 = 9^3\): \[ \left(\frac{16}{66}\right)^{x} = \left(\frac{4}{9}\right)^{3} \] ### Step 5: Solving for \(x\) Now we have: \[ \frac{16}{66} = \frac{4}{9} \] This implies: \[ \frac{16}{66} = \frac{4}{9} \Rightarrow \frac{8}{33} = \frac{4}{9} \] Cross-multiplying gives: \[ 8 \cdot 9 = 4 \cdot 33 \Rightarrow 72 = 132 \] This leads to: \[ x = 3 \] ### Final Answer: Thus, the value of \(x\) is: \[ \boxed{3} \]
Promotional Banner

Topper's Solved these Questions

  • NUMBER SYSTEMS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (Integer Numerical value type)|10 Videos
  • LINES AND ANGLES

    MTG IIT JEE FOUNDATION|Exercise OLYMPIAD/HOTS CORNER|20 Videos
  • POLYNOMIALS

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Corner|20 Videos

Similar Questions

Explore conceptually related problems

(sqrt(2)+sqrt(3))/(3sqrt(2)-2sqrt(3))=2-b sqrt(6) find b

( sqrt(2) + sqrt(3)) /( sqrt(2 - sqrt(3)) = a + bsqrt(3) , find the a and b

find the value (5+sqrt(6))/(3-sqrt(6))=a+bsqrt(6)

6sqrt(3)x^(2)-47x+5sqrt(3)

Evaluate a and b (5-sqrt(6))/(5+sqrt(6))=a-bsqrt(6)

If (4 sqrt(3) + 5 sqrt(2))/(sqrt(48 ) + sqrt(18))= a + bsqrt(6) , then the value of a and b are respectively

If (4+2sqrt5)/(4-3sqrt5) = a+bsqrt5 ,then

If sqrt((125 a^(6) b^(4) c^(2))/(5a^(4) b^(2))) = x, " then find " (x^(2))/(abc)

If x=(sqrt(5)+sqrt(3))/(sqrt(5)-sqrt(3)) and y=(sqrt(5)-sqrt(3))/(sqrt(5)+sqrt(2)), then x+y+xy=9(b)5(c)17(d)7, then

MTG IIT JEE FOUNDATION-NUMBER SYSTEMS-Olympiad/HOTS Corner
  1. Which of the following statements is incorrect ?

    Text Solution

    |

  2. Find the value of (9^(3//2)-3xx5^(0)-[(1)/(81)]^(-1//2))/(((64)/(125))...

    Text Solution

    |

  3. If x=(sqrt(a+2b)+sqrt(a-2b))/(sqrt(a+2b)-sqrt(a-2b)) then bx^(2)+b =

    Text Solution

    |

  4. The value of sqrt(6+2sqrt(3)+2sqrt(2)+2sqrt(6))-(1)/(sqrt(5-2sqrt(6)))...

    Text Solution

    |

  5. If a=2+sqrt(3)+sqrt(5) and b=3+sqrt(3)-sqrt(5), then a^(2)+b^(2)-4a-6b...

    Text Solution

    |

  6. Find the values of the integers a and b respectively, for which the so...

    Text Solution

    |

  7. The value of expression ((0.6)^(0)-(0.1)^(-1))/(((3)/(2^(3)))^(-1).((3...

    Text Solution

    |

  8. Expressing 0.bar23+0.2bar3 as a single decimal, we get

    Text Solution

    |

  9. If (4sqrt(3)+5sqrt(2))/(sqrt(48)+sqrt(18))=(a+bsqrt(6))/(15) and ((a)/...

    Text Solution

    |

  10. If\ \ sqrt(2^n)=1024 ,\ \ then 3^(2(n/4-4))= 3 (b) 9 (c) 27 (d...

    Text Solution

    |

  11. Express 1-(1)/(1+sqrt(3))+(1)/(1-sqrt(3)) in the form a+bsqrt(3), wher...

    Text Solution

    |

  12. If (3+2sqrt(3))/(3-sqrt(3))=a+sqrt(3)b , then the value of sqrt(a+b) ,...

    Text Solution

    |

  13. Simplify: 2/(sqrt(5)+\ sqrt(3))+1/(sqrt(3)+\ sqrt(2))-3/(sqrt(5)+\ sq...

    Text Solution

    |

  14. What is the value of 2.bar(6)-1.bar(9) ?

    Text Solution

    |

  15. The sum of 0.bar(6) and 0.bar(7) is

    Text Solution

    |

  16. If 2^(x)=4^(y)=8^(z) and ((1)/(2x)+(1)/(4y)+(1)/(6z))=(24)/(7), then f...

    Text Solution

    |

  17. If 3sqrt(3)xx3^(3)-:3^(-3//2)=3^(a+2) , then a =

    Text Solution

    |

  18. Find the value of a and b respectively, if (5+sqrt(3))/(7-4sqrt(3))=47...

    Text Solution

    |

  19. If 2^(x+3)=32 , then what is the value of 3^(6-x) ?

    Text Solution

    |

  20. The numbers 7.478478…. and 1.101001000100001 ….. are

    Text Solution

    |