Home
Class 9
MATHS
Evaluate the following using suitable id...

Evaluate the following using suitable identities :
(i) `(99)^(3)`
(ii) `(102)^(3)`
(iii) `(998)^(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the cubes of the numbers 99, 102, and 998 using suitable identities, we will use the following identities: 1. **Identity for (a + b)³**: \[ (a + b)³ = a³ + b³ + 3ab(a + b) \] 2. **Identity for (a - b)³**: \[ (a - b)³ = a³ - b³ - 3ab(a - b) \] Now, let's solve each part step by step. ### (i) Evaluate \(99^3\) 1. Rewrite \(99\) as \(100 - 1\): \[ 99^3 = (100 - 1)^3 \] Here, \(a = 100\) and \(b = 1\). 2. Apply the identity for \((a - b)^3\): \[ (100 - 1)^3 = 100^3 - 1^3 - 3 \cdot 100 \cdot 1 \cdot (100 - 1) \] 3. Calculate each term: - \(100^3 = 1000000\) - \(1^3 = 1\) - \(3 \cdot 100 \cdot 1 = 300\) - \(100 - 1 = 99\) - Therefore, \(3 \cdot 100 \cdot 1 \cdot 99 = 29700\) 4. Substitute back into the equation: \[ 99^3 = 1000000 - 1 - 29700 \] \[ = 1000000 - 1 - 29700 = 970299 \] ### (ii) Evaluate \(102^3\) 1. Rewrite \(102\) as \(100 + 2\): \[ 102^3 = (100 + 2)^3 \] Here, \(a = 100\) and \(b = 2\). 2. Apply the identity for \((a + b)^3\): \[ (100 + 2)^3 = 100^3 + 2^3 + 3 \cdot 100 \cdot 2 \cdot (100 + 2) \] 3. Calculate each term: - \(100^3 = 1000000\) - \(2^3 = 8\) - \(3 \cdot 100 \cdot 2 = 600\) - \(100 + 2 = 102\) - Therefore, \(3 \cdot 100 \cdot 2 \cdot 102 = 61200\) 4. Substitute back into the equation: \[ 102^3 = 1000000 + 8 + 61200 \] \[ = 1000000 + 8 + 61200 = 1061208 \] ### (iii) Evaluate \(998^3\) 1. Rewrite \(998\) as \(1000 - 2\): \[ 998^3 = (1000 - 2)^3 \] Here, \(a = 1000\) and \(b = 2\). 2. Apply the identity for \((a - b)^3\): \[ (1000 - 2)^3 = 1000^3 - 2^3 - 3 \cdot 1000 \cdot 2 \cdot (1000 - 2) \] 3. Calculate each term: - \(1000^3 = 1000000000\) - \(2^3 = 8\) - \(3 \cdot 1000 \cdot 2 = 6000\) - \(1000 - 2 = 998\) - Therefore, \(3 \cdot 1000 \cdot 2 \cdot 998 = 11976000\) 4. Substitute back into the equation: \[ 998^3 = 1000000000 - 8 - 11976000 \] \[ = 1000000000 - 8 - 11976000 = 994011992 \] ### Final Answers - \(99^3 = 970299\) - \(102^3 = 1061208\) - \(998^3 = 994011992\)
Promotional Banner

Topper's Solved these Questions

  • POLYNOMIALS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (Multiple choice Question (Level-1))|35 Videos
  • POLYNOMIALS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (Multiple choice Question (Level2))|15 Videos
  • POLYNOMIALS

    MTG IIT JEE FOUNDATION|Exercise NCERT Section (Exercise 2.4)|5 Videos
  • NUMBER SYSTEMS

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Corner|20 Videos
  • PROBABILITY

    MTG IIT JEE FOUNDATION|Exercise OLYMPIAD/HOTS CORNER|20 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following using suitable identities: (i)quad (99)^(2)

Evaluate each of the following using suitable identities: ( i ) (104)^(3) (ii)

Evaluate the following using a suitable identity: 198times202

Evaluate the following using identities: (i) (105)^(2) (ii) (47)^(2) (iii) (8.3 xx 7.7)

Evaluate (100.4)^2 by using suitable identities

(i) quad (998)^(3)

Evaluate by using suitable identity: (997)^(3) .