Home
Class 9
MATHS
Factorisation of a^(2x)-b^(2x) is...

Factorisation of `a^(2x)-b^(2x)` is

A

`(a^(x)+b^(x))(a^(x)-b^(x))`

B

`(a^(x)-b^(x))^(2)`

C

`(a^(x)+b^(x))(a^(2)-b^(2))`

D

`(a^(x)-b^(x))(a^(2)+b^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To factorize the expression \( a^{2x} - b^{2x} \), we can follow these steps: ### Step 1: Recognize the expression The expression \( a^{2x} - b^{2x} \) is a difference of squares. We can rewrite it as: \[ a^{2x} - b^{2x} = (a^x)^2 - (b^x)^2 \] ### Step 2: Apply the difference of squares formula We know from algebra that the difference of squares can be factored using the identity: \[ A^2 - B^2 = (A + B)(A - B) \] In our case, let \( A = a^x \) and \( B = b^x \). Therefore, we can apply the formula: \[ (a^x)^2 - (b^x)^2 = (a^x + b^x)(a^x - b^x) \] ### Step 3: Write the final factorized form Thus, the factorization of \( a^{2x} - b^{2x} \) is: \[ a^{2x} - b^{2x} = (a^x + b^x)(a^x - b^x) \] ### Final Answer: The factorization of \( a^{2x} - b^{2x} \) is: \[ (a^x + b^x)(a^x - b^x) \] ---
Promotional Banner

Topper's Solved these Questions

  • POLYNOMIALS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (Multiple choice Question (Level2))|15 Videos
  • POLYNOMIALS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (Match the following)|3 Videos
  • POLYNOMIALS

    MTG IIT JEE FOUNDATION|Exercise NCERT Section (Exercise 2.5)|16 Videos
  • NUMBER SYSTEMS

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Corner|20 Videos
  • PROBABILITY

    MTG IIT JEE FOUNDATION|Exercise OLYMPIAD/HOTS CORNER|20 Videos

Similar Questions

Explore conceptually related problems

Solve the following equation by using factorisation method: 9x^(2)-6b^(2)x-(a^(4)-b^(4))=0.

Factorise : x^(2)-y^(2)-2x+1

Factorise : a^2x^2+(ax^2+1)x+a

Solve by factorisation . 2x^2+9x+9=0

Factorise : 8x^3 - (2x-y)^3

Factorise : abx^2+a^2x+b^2x +ab

Factorise: ab (x ^(2) + y ^(2)) - xy (a ^(2) + b ^(2))

Factorise x^(3)-2x^(2)-x+2

Factorise : (2x-3)^2-8x+12