Home
Class 9
MATHS
If x+(1)/(x)=4 , then find x^(3)+(1)/(x^...

If `x+(1)/(x)=4` , then find `x^(3)+(1)/(x^(3))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x + \frac{1}{x} = 4 \) and find the value of \( x^3 + \frac{1}{x^3} \), we can use the identity for the cube of a sum. Here’s how to do it step-by-step: ### Step 1: Use the identity for cubes We know that: \[ a + b = x + \frac{1}{x} \] Let \( a = x \) and \( b = \frac{1}{x} \). The identity states: \[ (a + b)^3 = a^3 + b^3 + 3ab(a + b) \] ### Step 2: Substitute values into the identity From the equation \( x + \frac{1}{x} = 4 \), we can substitute this into the identity: \[ (x + \frac{1}{x})^3 = x^3 + \frac{1}{x^3} + 3 \cdot x \cdot \frac{1}{x} \cdot (x + \frac{1}{x}) \] ### Step 3: Simplify the equation We know that \( x \cdot \frac{1}{x} = 1 \), so the equation becomes: \[ 4^3 = x^3 + \frac{1}{x^3} + 3 \cdot 1 \cdot 4 \] Calculating \( 4^3 \): \[ 64 = x^3 + \frac{1}{x^3} + 12 \] ### Step 4: Isolate \( x^3 + \frac{1}{x^3} \) Now, we can isolate \( x^3 + \frac{1}{x^3} \): \[ x^3 + \frac{1}{x^3} = 64 - 12 \] ### Step 5: Calculate the final value \[ x^3 + \frac{1}{x^3} = 52 \] Thus, the final answer is: \[ \boxed{52} \]
Promotional Banner

Topper's Solved these Questions

  • POLYNOMIALS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (Subjective problems (Long answer type))|5 Videos
  • POLYNOMIALS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (Integral /numerical value type)|10 Videos
  • POLYNOMIALS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (Subjective problems (Very short answer type))|9 Videos
  • NUMBER SYSTEMS

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Corner|20 Videos
  • PROBABILITY

    MTG IIT JEE FOUNDATION|Exercise OLYMPIAD/HOTS CORNER|20 Videos

Similar Questions

Explore conceptually related problems

If x+(1)/(x)=7 ,then find x^(3)-(1)/(x^(3))

If x^(4)+(1)/(x^(4))=194, find x^(3)+(1)/(x^(3)),x^(2)+(1)/(x^(2)) and x+(1)/(x)

If x^(4)+(1)/(x^(4))=194, find x^(3)+(1)/(x^(3)),x^(2)+(1)/(x^(2)) and x+(1)/(x)

If x^(4) + (1)/(x^(4)) = 322 find x^(3)- (1)/(x^(3))= ?

If x^(2)+3x+1=0 then find x^(3)+(1)/(x^(3)),x^(4)+(1)/(x^(4)),x^(2)-(1)/(x^(2)),x^(2)+(1)/(x^(2))

If x+(1)/(x) =4 then find the value of x^(3)+(1)/(x^(3)) .

If x^(2)+(1)/(x^(2))=(17)/(4), then find x-(1)/(x),x+(1)/(x),x^(3)-(1)/(x^(3)) and x^(3)+(1)/(x^(3))

If x-(1)/(x)=3, find the values of x^(2)+(1)/(x^(2)) and x^(4)+(1)/(x^(4))