Home
Class 9
MATHS
If 2a+b=12 and ab=15, then find the valu...

If `2a+b=12` and `ab=15`, then find the value of `8a^(3)+b^(3)` .

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( 8a^3 + b^3 \) given the equations \( 2a + b = 12 \) and \( ab = 15 \). ### Step-by-Step Solution: 1. **Identify the given equations:** \[ 2a + b = 12 \quad \text{(1)} \] \[ ab = 15 \quad \text{(2)} \] 2. **Use the identity for cubes:** We can use the identity: \[ x^3 + y^3 = (x + y)(x^2 - xy + y^2) \] In our case, let \( x = 2a \) and \( y = b \). Thus, \[ (2a)^3 + b^3 = (2a + b)((2a)^2 - (2a)b + b^2) \] 3. **Calculate \( (2a + b) \):** From equation (1), we already know: \[ 2a + b = 12 \] 4. **Calculate \( (2a)^2 \), \( (2a)b \), and \( b^2 \):** - \( (2a)^2 = 4a^2 \) - \( (2a)b = 2ab = 2 \times 15 = 30 \) (using equation (2)) - \( b^2 \) can be expressed in terms of \( a \) and \( ab \). We will find \( b \) later. 5. **Substituting into the identity:** Now we substitute into the identity: \[ 8a^3 + b^3 = (2a + b)(4a^2 - 30 + b^2) \] 6. **Find \( b^2 \):** We can express \( b \) from equation (1): \[ b = 12 - 2a \] Now substitute \( b \) into \( ab = 15 \): \[ a(12 - 2a) = 15 \] \[ 12a - 2a^2 = 15 \] Rearranging gives: \[ 2a^2 - 12a + 15 = 0 \] 7. **Solve the quadratic equation:** We can use the quadratic formula \( a = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ a = \frac{12 \pm \sqrt{(-12)^2 - 4 \cdot 2 \cdot 15}}{2 \cdot 2} \] \[ = \frac{12 \pm \sqrt{144 - 120}}{4} \] \[ = \frac{12 \pm \sqrt{24}}{4} \] \[ = \frac{12 \pm 2\sqrt{6}}{4} \] \[ = 3 \pm \frac{\sqrt{6}}{2} \] 8. **Find the corresponding \( b \) values:** Using \( b = 12 - 2a \): - If \( a = 3 + \frac{\sqrt{6}}{2} \): \[ b = 12 - 2\left(3 + \frac{\sqrt{6}}{2}\right) = 6 - \sqrt{6} \] - If \( a = 3 - \frac{\sqrt{6}}{2} \): \[ b = 12 - 2\left(3 - \frac{\sqrt{6}}{2}\right) = 6 + \sqrt{6} \] 9. **Calculate \( 8a^3 + b^3 \):** Now substitute back into the identity: \[ 8a^3 + b^3 = 12(4a^2 - 30 + b^2) \] We need to calculate \( 4a^2 \) and \( b^2 \): - \( 4a^2 = 4(3 \pm \frac{\sqrt{6}}{2})^2 \) - \( b^2 = (6 \mp \sqrt{6})^2 \) 10. **Final calculation:** After calculating \( 4a^2 \) and \( b^2 \), substitute back into the equation to find the final value of \( 8a^3 + b^3 \). ### Final Result: After calculating, we find: \[ 8a^3 + b^3 = 648 \]
Promotional Banner

Topper's Solved these Questions

  • POLYNOMIALS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (Subjective problems (Long answer type))|5 Videos
  • POLYNOMIALS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (Integral /numerical value type)|10 Videos
  • POLYNOMIALS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (Subjective problems (Very short answer type))|9 Videos
  • NUMBER SYSTEMS

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Corner|20 Videos
  • PROBABILITY

    MTG IIT JEE FOUNDATION|Exercise OLYMPIAD/HOTS CORNER|20 Videos

Similar Questions

Explore conceptually related problems

a+b=8 and ab=15 then find the value of a&b

If a+b=10 and ab=21, find the value of a^(3)+b^(3)

If a+b=10 and ab=21, find the value of a^(3)+b^(3)

If a-b=4 and ab=21, find the value of a^(3)-b^(3)

If a-b=4 and ab=45, find the value of a^(3)-b^(3)

If a+b=10 and ab=21, find the value of a^(3)+b^(3)

If a-b=5 and ab=12, find the value of a^(3)+b^(2)

If a-b=6 and ab=20, find the value of a^(3)-b^(3)

If a+b=8 and ab=6, find the value of a^(3)+b^(3)

If a-b and ab=20, find the value of a^(3)-b^(3)