Home
Class 8
MATHS
If root3((3^(6) xx 4^(3) xx 2^(6))/(8^(9...

If `root3((3^(6) xx 4^(3) xx 2^(6))/(8^(9) xx2^(3)))=(3/8)^(k)` ,then k = _______ .

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \sqrt[3]{\frac{3^{6} \times 4^{3} \times 2^{6}}{8^{9} \times 2^{3}}} = \left(\frac{3}{8}\right)^{k}, \] we will follow these steps: ### Step 1: Rewrite the terms First, we rewrite \(4^3\) and \(8^9\) in terms of base \(2\): - \(4^3 = (2^2)^3 = 2^{6}\) - \(8^9 = (2^3)^9 = 2^{27}\) Now, substituting these into the equation gives us: \[ \sqrt[3]{\frac{3^{6} \times 2^{6} \times 2^{6}}{2^{27} \times 2^{3}}} \] ### Step 2: Simplify the fraction Next, we simplify the fraction inside the cube root: The numerator becomes: \[ 3^{6} \times 2^{6} \times 2^{6} = 3^{6} \times 2^{12} \] The denominator becomes: \[ 2^{27} \times 2^{3} = 2^{30} \] Thus, we have: \[ \sqrt[3]{\frac{3^{6} \times 2^{12}}{2^{30}}} \] ### Step 3: Further simplify the fraction Now, we can simplify the fraction: \[ \frac{2^{12}}{2^{30}} = 2^{12 - 30} = 2^{-18} \] So the expression becomes: \[ \sqrt[3]{3^{6} \times 2^{-18}} = \sqrt[3]{3^{6}} \times \sqrt[3]{2^{-18}} \] ### Step 4: Apply the cube root Now we apply the cube root: \[ \sqrt[3]{3^{6}} = 3^{6/3} = 3^{2} \] \[ \sqrt[3]{2^{-18}} = 2^{-18/3} = 2^{-6} \] Thus, we have: \[ 3^{2} \times 2^{-6} = \frac{3^{2}}{2^{6}} \] ### Step 5: Rewrite in terms of \(\frac{3}{8}\) Now we can express \(2^{6}\) as \(8^{2}\): \[ \frac{3^{2}}{2^{6}} = \frac{3^{2}}{(2^{3})^{2}} = \frac{3^{2}}{8^{2}} \] ### Step 6: Set equal to the original expression Now we can set this equal to the right side of the original equation: \[ \frac{3^{2}}{8^{2}} = \left(\frac{3}{8}\right)^{k} \] ### Step 7: Compare the powers Since the bases are the same, we can equate the exponents: \[ 2 = k \] Thus, the value of \(k\) is: \[ \boxed{2} \] ---
Promotional Banner

Topper's Solved these Questions

  • CUBES AND CUBE ROOTS

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Corner|20 Videos
  • CUBES AND CUBE ROOTS

    MTG IIT JEE FOUNDATION|Exercise Exercise (Subjective Problems.) (Long Answer Type)|5 Videos
  • COMPARING QUANTITIES

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Cornet|15 Videos
  • DATA HANDLING

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Corner|7 Videos

Similar Questions

Explore conceptually related problems

If root3((a^(6) xx b^(3) xx c^(21))/(c^(9) xx a^(12)))=(bc^(k))/a^(k//2') then k=______ .

3sqrt((3^(6)xx4^(3)xx2^(6))/(8^(9)xx2^(3)) =____________

(3^8 xx b^6)/(9^3 xx b^4)

(8)^3 xx (-6)^3 xx (3)^3

Solve :9^(8.6)xx8^(3.9)xx72^(4.4)xx9^(3.9)xx8^(8.6)=72^(?)