Home
Class 8
MATHS
The value of sqrt(0.00001225/(0.00005329...

The value of `sqrt(0.00001225/(0.00005329))-root3(sqrt0.000064)` is

A

0.2

B

0.279

C

0.479

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sqrt{\frac{0.00001225}{0.00005329}} - \sqrt[3]{\sqrt{0.000064}} \), we will break it down step by step. ### Step 1: Simplify the square root expression We start with the expression: \[ \sqrt{\frac{0.00001225}{0.00005329}} \] To simplify this, we can first divide the two numbers inside the square root. ### Step 2: Perform the division Calculating the division: \[ \frac{0.00001225}{0.00005329} = \frac{1225}{5329} \] Now, we can calculate the square root of this fraction. ### Step 3: Calculate the square root Next, we find the square root: \[ \sqrt{\frac{1225}{5329}} = \frac{\sqrt{1225}}{\sqrt{5329}} = \frac{35}{73} \] ### Step 4: Simplify the cube root expression Now, we will simplify the second part of the expression: \[ \sqrt[3]{\sqrt{0.000064}} \] First, we find the square root of \(0.000064\): \[ \sqrt{0.000064} = 0.008 \] ### Step 5: Calculate the cube root Now, we find the cube root of \(0.008\): \[ \sqrt[3]{0.008} = 0.002 \] ### Step 6: Combine the results Now we can combine the results from Step 3 and Step 5: \[ \frac{35}{73} - 0.002 \] ### Step 7: Convert \(0.002\) to a fraction To perform the subtraction, we need a common denominator. We can convert \(0.002\) to a fraction: \[ 0.002 = \frac{2}{1000} = \frac{2}{1000} \cdot \frac{73}{73} = \frac{146}{73000} \] ### Step 8: Perform the subtraction Now we perform the subtraction: \[ \frac{35}{73} - \frac{146}{73000} \] To subtract these fractions, we need to convert \(\frac{35}{73}\) to have the same denominator: \[ \frac{35 \cdot 1000}{73 \cdot 1000} = \frac{35000}{73000} \] Now we can subtract: \[ \frac{35000 - 146}{73000} = \frac{34854}{73000} \] ### Final Result Thus, the final result is: \[ \frac{34854}{73000} \]
Promotional Banner

Topper's Solved these Questions

  • CUBES AND CUBE ROOTS

    MTG IIT JEE FOUNDATION|Exercise Exercise (Integer/Numerical Value Type) |10 Videos
  • COMPARING QUANTITIES

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Cornet|15 Videos
  • DATA HANDLING

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Corner|7 Videos

Similar Questions

Explore conceptually related problems

The value of sqrt0.4 is

root3 sqrt0.000064 is equal

The value of sqrt(0.25) is.

3sqrt(sqrt(0.000064))=?

sqrt((0.00001225)/(0.00005392)) is equal to :

MTG IIT JEE FOUNDATION-CUBES AND CUBE ROOTS-Olympiad/HOTS Corner
  1. Simplify : (root6(27)-sqrt(6(3)/4))^(2)

    Text Solution

    |

  2. By what least number 3600 must be multiplied to make it a perfect cube...

    Text Solution

    |

  3. The value of sqrt(0.00001225/(0.00005329))-root3(sqrt0.000064) is

    Text Solution

    |

  4. Evalution : root3(-0.000008/(-0.000216))

    Text Solution

    |

  5. Evalution : root3(0.008)-root3(-512) +root3(2.197)

    Text Solution

    |

  6. (3root3(13824))/(2root3(-15625))+(2root3(-13824))/root3(5832)=

    Text Solution

    |

  7. Cube root of a number when divided by the smallest prime number gives ...

    Text Solution

    |

  8. If a number has digit 2 at unit place, then its cube has digit at its...

    Text Solution

    |

  9. Which of the following in incorrect?

    Text Solution

    |

  10. root(3)(1- 127/343) के बराबर है?

    Text Solution

    |

  11. If root3(x/729)+root3((8x)/729)+root3((27x)/5832)=1 , then find the va...

    Text Solution

    |

  12. (root3(3)+root3(2))(root3(9)+root3(4)-root3(6))=

    Text Solution

    |

  13. (root3(1.728)-root3(0.216))/(root3(2.197)-root3(0.343))=

    Text Solution

    |

  14. If 3^(9)+3^(12)+3^(15)+3^(n) is a perfect cube, n in N,then the value ...

    Text Solution

    |

  15. if x=root3(2(93)/125), then the value of x is

    Text Solution

    |

  16. if sqrtroot3(x xx 0.000009)=0.3 ,then the value of sqrtx is

    Text Solution

    |

  17. root3(1.728)/root3(13.824)xxroot3(4.096)/root3(216)=

    Text Solution

    |

  18. If root3(x/729)+root3((27x)/3375)=1, then find the value of x.

    Text Solution

    |

  19. if x=root3 (13(103)/125), then the value of x is

    Text Solution

    |

  20. Evaluate : root3(4096/64)+3root3(3375/125)

    Text Solution

    |