Home
Class 8
MATHS
Evalution : root3(-0.000008/(-0.000216))...

Evalution : `root3(-0.000008/(-0.000216))`

A

3

B

`-1//3`

C

`-3`

D

`1//3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sqrt[3]{\frac{-0.000008}{-0.000216}} \), we can follow these steps: ### Step 1: Simplify the expression We start with the expression: \[ \sqrt[3]{\frac{-0.000008}{-0.000216}} \] Since both the numerator and the denominator are negative, the negatives will cancel out: \[ \sqrt[3]{\frac{0.000008}{0.000216}} \] ### Step 2: Convert the decimal numbers to scientific notation We can express the numbers in scientific notation: - \( 0.000008 = 8 \times 10^{-6} \) - \( 0.000216 = 216 \times 10^{-6} \) Now we can rewrite the expression: \[ \sqrt[3]{\frac{8 \times 10^{-6}}{216 \times 10^{-6}}} \] ### Step 3: Cancel out the common terms The \( 10^{-6} \) in the numerator and denominator can be canceled: \[ \sqrt[3]{\frac{8}{216}} \] ### Step 4: Simplify the fraction Now we simplify \( \frac{8}{216} \): \[ \frac{8}{216} = \frac{1}{27} \] ### Step 5: Find the cube root Now we find the cube root: \[ \sqrt[3]{\frac{1}{27}} = \frac{1}{\sqrt[3]{27}} = \frac{1}{3} \] ### Final Answer Thus, the final answer is: \[ \frac{1}{3} \]
Promotional Banner

Topper's Solved these Questions

  • CUBES AND CUBE ROOTS

    MTG IIT JEE FOUNDATION|Exercise Exercise (Integer/Numerical Value Type) |10 Videos
  • COMPARING QUANTITIES

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Cornet|15 Videos
  • DATA HANDLING

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Corner|7 Videos

Similar Questions

Explore conceptually related problems

Evalution : root3(32.768)

Evalutions : root3(sqrt(0.000729))

(root3(0.000027))/(sqrt(0.0004)) =

Evalutions : root3(27)+root3(0.008)

Evalution : root3(0.008)-root3(-512) +root3(2.197)

The value of sqrt(0.00001225/(0.00005329))-root3(sqrt0.000064) is

MTG IIT JEE FOUNDATION-CUBES AND CUBE ROOTS-Olympiad/HOTS Corner
  1. Simplify : (root6(27)-sqrt(6(3)/4))^(2)

    Text Solution

    |

  2. By what least number 3600 must be multiplied to make it a perfect cube...

    Text Solution

    |

  3. The value of sqrt(0.00001225/(0.00005329))-root3(sqrt0.000064) is

    Text Solution

    |

  4. Evalution : root3(-0.000008/(-0.000216))

    Text Solution

    |

  5. Evalution : root3(0.008)-root3(-512) +root3(2.197)

    Text Solution

    |

  6. (3root3(13824))/(2root3(-15625))+(2root3(-13824))/root3(5832)=

    Text Solution

    |

  7. Cube root of a number when divided by the smallest prime number gives ...

    Text Solution

    |

  8. If a number has digit 2 at unit place, then its cube has digit at its...

    Text Solution

    |

  9. Which of the following in incorrect?

    Text Solution

    |

  10. root(3)(1- 127/343) के बराबर है?

    Text Solution

    |

  11. If root3(x/729)+root3((8x)/729)+root3((27x)/5832)=1 , then find the va...

    Text Solution

    |

  12. (root3(3)+root3(2))(root3(9)+root3(4)-root3(6))=

    Text Solution

    |

  13. (root3(1.728)-root3(0.216))/(root3(2.197)-root3(0.343))=

    Text Solution

    |

  14. If 3^(9)+3^(12)+3^(15)+3^(n) is a perfect cube, n in N,then the value ...

    Text Solution

    |

  15. if x=root3(2(93)/125), then the value of x is

    Text Solution

    |

  16. if sqrtroot3(x xx 0.000009)=0.3 ,then the value of sqrtx is

    Text Solution

    |

  17. root3(1.728)/root3(13.824)xxroot3(4.096)/root3(216)=

    Text Solution

    |

  18. If root3(x/729)+root3((27x)/3375)=1, then find the value of x.

    Text Solution

    |

  19. if x=root3 (13(103)/125), then the value of x is

    Text Solution

    |

  20. Evaluate : root3(4096/64)+3root3(3375/125)

    Text Solution

    |