Home
Class 8
MATHS
(3root3(13824))/(2root3(-15625))+(2root3...

`(3root3(13824))/(2root3(-15625))+(2root3(-13824))/root3(5832)=`

A

`50/27`

B

`-50/27`

C

`27/50`

D

`-27/50`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((3\sqrt[3]{13824})/(2\sqrt[3]{-15625}) + (2\sqrt[3]{-13824})/\sqrt[3]{5832}\), we will break it down step by step. ### Step 1: Calculate the cube roots First, we need to calculate the cube roots of the numbers involved. 1. **Calculate \(\sqrt[3]{13824}\)**: - \(13824 = 24^3\) - Therefore, \(\sqrt[3]{13824} = 24\). 2. **Calculate \(\sqrt[3]{-15625}\)**: - \(-15625 = -25^3\) - Therefore, \(\sqrt[3]{-15625} = -25\). 3. **Calculate \(\sqrt[3]{-13824}\)**: - \(-13824 = -24^3\) - Therefore, \(\sqrt[3]{-13824} = -24\). 4. **Calculate \(\sqrt[3]{5832}\)**: - \(5832 = 18^3\) - Therefore, \(\sqrt[3]{5832} = 18\). ### Step 2: Substitute the cube roots back into the expression Now we substitute these values back into the expression: \[ \frac{3 \cdot 24}{2 \cdot (-25)} + \frac{2 \cdot (-24)}{18} \] ### Step 3: Simplify each term 1. **Simplify the first term**: \[ \frac{3 \cdot 24}{2 \cdot (-25)} = \frac{72}{-50} = -\frac{72}{50} = -\frac{36}{25} \] 2. **Simplify the second term**: \[ \frac{2 \cdot (-24)}{18} = \frac{-48}{18} = -\frac{8}{3} \] ### Step 4: Combine the two terms Now we need to combine \(-\frac{36}{25}\) and \(-\frac{8}{3}\). To do this, we need a common denominator. - The least common multiple of 25 and 3 is 75. Convert both fractions: 1. **Convert \(-\frac{36}{25}\)**: \[ -\frac{36}{25} = -\frac{36 \cdot 3}{25 \cdot 3} = -\frac{108}{75} \] 2. **Convert \(-\frac{8}{3}\)**: \[ -\frac{8}{3} = -\frac{8 \cdot 25}{3 \cdot 25} = -\frac{200}{75} \] ### Step 5: Add the two fractions Now we can add the two fractions: \[ -\frac{108}{75} - \frac{200}{75} = -\frac{108 + 200}{75} = -\frac{308}{75} \] ### Final Answer Thus, the final answer is: \[ -\frac{308}{75} \]
Promotional Banner

Topper's Solved these Questions

  • CUBES AND CUBE ROOTS

    MTG IIT JEE FOUNDATION|Exercise Exercise (Integer/Numerical Value Type) |10 Videos
  • COMPARING QUANTITIES

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Cornet|15 Videos
  • DATA HANDLING

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Corner|7 Videos

Similar Questions

Explore conceptually related problems

root3(1.728)/root3(13.824)xxroot3(4.096)/root3(216)=

(root3(1.728)-root3(0.216))/(root3(2.197)-root3(0.343))=

root(4)(root(3)(3^2))

The value of (root3(125) xx root3(64))/(root3(125)-root3(64)) is

root (4) (root(3)(2^2))

root(3)(2)+root(3)(16)-root(3)(54)

If root(3)(3(root(3)(x)-(1)/(root(3)(x))))=2, then root(3)(x)-(1)/(root(3)(x))

MTG IIT JEE FOUNDATION-CUBES AND CUBE ROOTS-Olympiad/HOTS Corner
  1. Simplify : (root6(27)-sqrt(6(3)/4))^(2)

    Text Solution

    |

  2. By what least number 3600 must be multiplied to make it a perfect cube...

    Text Solution

    |

  3. The value of sqrt(0.00001225/(0.00005329))-root3(sqrt0.000064) is

    Text Solution

    |

  4. Evalution : root3(-0.000008/(-0.000216))

    Text Solution

    |

  5. Evalution : root3(0.008)-root3(-512) +root3(2.197)

    Text Solution

    |

  6. (3root3(13824))/(2root3(-15625))+(2root3(-13824))/root3(5832)=

    Text Solution

    |

  7. Cube root of a number when divided by the smallest prime number gives ...

    Text Solution

    |

  8. If a number has digit 2 at unit place, then its cube has digit at its...

    Text Solution

    |

  9. Which of the following in incorrect?

    Text Solution

    |

  10. root(3)(1- 127/343) के बराबर है?

    Text Solution

    |

  11. If root3(x/729)+root3((8x)/729)+root3((27x)/5832)=1 , then find the va...

    Text Solution

    |

  12. (root3(3)+root3(2))(root3(9)+root3(4)-root3(6))=

    Text Solution

    |

  13. (root3(1.728)-root3(0.216))/(root3(2.197)-root3(0.343))=

    Text Solution

    |

  14. If 3^(9)+3^(12)+3^(15)+3^(n) is a perfect cube, n in N,then the value ...

    Text Solution

    |

  15. if x=root3(2(93)/125), then the value of x is

    Text Solution

    |

  16. if sqrtroot3(x xx 0.000009)=0.3 ,then the value of sqrtx is

    Text Solution

    |

  17. root3(1.728)/root3(13.824)xxroot3(4.096)/root3(216)=

    Text Solution

    |

  18. If root3(x/729)+root3((27x)/3375)=1, then find the value of x.

    Text Solution

    |

  19. if x=root3 (13(103)/125), then the value of x is

    Text Solution

    |

  20. Evaluate : root3(4096/64)+3root3(3375/125)

    Text Solution

    |