Home
Class 8
MATHS
If root3(x/729)+root3((8x)/729)+root3((2...

If `root3(x/729)+root3((8x)/729)+root3((27x)/5832)=1` , then find the valueof x.

A

1

B

8

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \sqrt[3]{\frac{x}{729}} + \sqrt[3]{\frac{8x}{729}} + \sqrt[3]{\frac{27x}{5832}} = 1, \] we will follow these steps: ### Step 1: Rewrite the equation First, we can express the cube roots in a more manageable form. We know that \(729 = 9^3\) and \(5832 = 18^3\). Thus, we rewrite the equation as: \[ \sqrt[3]{\frac{x}{9^3}} + \sqrt[3]{\frac{8x}{9^3}} + \sqrt[3]{\frac{27x}{18^3}} = 1. \] ### Step 2: Factor out the common term We can factor out \(\sqrt[3]{\frac{x}{9^3}}\) from the first two terms: \[ \sqrt[3]{\frac{x}{9^3}} \left(1 + \sqrt[3]{8} + \sqrt[3]{\frac{27 \cdot 9^3}{18^3}}\right) = 1. \] ### Step 3: Simplify the cube roots We know that \(\sqrt[3]{8} = 2\) and \(\sqrt[3]{27} = 3\). Now, we simplify \(\sqrt[3]{\frac{27 \cdot 729}{5832}}\): \[ \sqrt[3]{\frac{27 \cdot 729}{5832}} = \sqrt[3]{\frac{27 \cdot 729}{18^3}} = \sqrt[3]{\frac{27 \cdot 729}{5832}} = \sqrt[3]{\frac{27 \cdot 729}{27 \cdot 216}} = \sqrt[3]{\frac{729}{216}} = \sqrt[3]{\frac{9^3}{6^3}} = \frac{9}{6} = \frac{3}{2}. \] ### Step 4: Substitute back into the equation Now we substitute back into the equation: \[ \sqrt[3]{\frac{x}{9^3}} \left(1 + 2 + \frac{3}{2}\right) = 1. \] ### Step 5: Combine the terms Now we need to combine \(1 + 2 + \frac{3}{2}\): \[ 1 + 2 = 3 \quad \text{and} \quad 3 + \frac{3}{2} = \frac{6}{2} + \frac{3}{2} = \frac{9}{2}. \] So we have: \[ \sqrt[3]{\frac{x}{729}} \cdot \frac{9}{2} = 1. \] ### Step 6: Solve for \(x\) Now we can isolate \(\sqrt[3]{\frac{x}{729}}\): \[ \sqrt[3]{\frac{x}{729}} = \frac{2}{9}. \] Cubing both sides gives: \[ \frac{x}{729} = \left(\frac{2}{9}\right)^3 = \frac{8}{729}. \] ### Step 7: Multiply both sides by 729 Now, multiply both sides by 729: \[ x = 8. \] ### Final Answer Thus, the value of \(x\) is \[ \boxed{8}. \]
Promotional Banner

Topper's Solved these Questions

  • CUBES AND CUBE ROOTS

    MTG IIT JEE FOUNDATION|Exercise Exercise (Integer/Numerical Value Type) |10 Videos
  • COMPARING QUANTITIES

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Cornet|15 Videos
  • DATA HANDLING

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Corner|7 Videos

Similar Questions

Explore conceptually related problems

If root3(x/729)+root3((27x)/3375)=1 , then find the value of x.

if x=root3(2(93)/125) , then the value of x is

if x=root3 (13(103)/125) , then the value of x is

if root3((156+x))=12 ,them the value of x is

If (sqrt(x))/(sqrt(0.0064))=root3(0.008) , then find the value of x.

If 3^(root(3)(x))+4^(root(3)(x))= 5^(root(3)(x)) then what is the value of x is? यदि 3^(root(3)(x))+4^(root(3)(x))= 5^(root(3)(x)) है तो x का मान क्या है?

if root3(x-12)=19 ,then the value of x is

root3((-343)/(729))=?

root3((-512)/(729))=?

MTG IIT JEE FOUNDATION-CUBES AND CUBE ROOTS-Olympiad/HOTS Corner
  1. Simplify : (root6(27)-sqrt(6(3)/4))^(2)

    Text Solution

    |

  2. By what least number 3600 must be multiplied to make it a perfect cube...

    Text Solution

    |

  3. The value of sqrt(0.00001225/(0.00005329))-root3(sqrt0.000064) is

    Text Solution

    |

  4. Evalution : root3(-0.000008/(-0.000216))

    Text Solution

    |

  5. Evalution : root3(0.008)-root3(-512) +root3(2.197)

    Text Solution

    |

  6. (3root3(13824))/(2root3(-15625))+(2root3(-13824))/root3(5832)=

    Text Solution

    |

  7. Cube root of a number when divided by the smallest prime number gives ...

    Text Solution

    |

  8. If a number has digit 2 at unit place, then its cube has digit at its...

    Text Solution

    |

  9. Which of the following in incorrect?

    Text Solution

    |

  10. root(3)(1- 127/343) के बराबर है?

    Text Solution

    |

  11. If root3(x/729)+root3((8x)/729)+root3((27x)/5832)=1 , then find the va...

    Text Solution

    |

  12. (root3(3)+root3(2))(root3(9)+root3(4)-root3(6))=

    Text Solution

    |

  13. (root3(1.728)-root3(0.216))/(root3(2.197)-root3(0.343))=

    Text Solution

    |

  14. If 3^(9)+3^(12)+3^(15)+3^(n) is a perfect cube, n in N,then the value ...

    Text Solution

    |

  15. if x=root3(2(93)/125), then the value of x is

    Text Solution

    |

  16. if sqrtroot3(x xx 0.000009)=0.3 ,then the value of sqrtx is

    Text Solution

    |

  17. root3(1.728)/root3(13.824)xxroot3(4.096)/root3(216)=

    Text Solution

    |

  18. If root3(x/729)+root3((27x)/3375)=1, then find the value of x.

    Text Solution

    |

  19. if x=root3 (13(103)/125), then the value of x is

    Text Solution

    |

  20. Evaluate : root3(4096/64)+3root3(3375/125)

    Text Solution

    |