Home
Class 8
MATHS
(root3(3)+root3(2))(root3(9)+root3(4)-ro...

`(root3(3)+root3(2))(root3(9)+root3(4)-root3(6))=`

A

5

B

`root9(5)`

C

`root6(5)`

D

`root3(5)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((\sqrt[3]{3} + \sqrt[3]{2})(\sqrt[3]{9} + \sqrt[3]{4} - \sqrt[3]{6})\), we will follow these steps: ### Step 1: Expand the expression We will use the distributive property (also known as the FOIL method for binomials) to expand the expression: \[ (\sqrt[3]{3} + \sqrt[3]{2})(\sqrt[3]{9} + \sqrt[3]{4} - \sqrt[3]{6}) = \sqrt[3]{3} \cdot \sqrt[3]{9} + \sqrt[3]{3} \cdot \sqrt[3]{4} - \sqrt[3]{3} \cdot \sqrt[3]{6} + \sqrt[3]{2} \cdot \sqrt[3]{9} + \sqrt[3]{2} \cdot \sqrt[3]{4} - \sqrt[3]{2} \cdot \sqrt[3]{6} \] ### Step 2: Simplify each term Now, we will simplify each term: 1. \(\sqrt[3]{3} \cdot \sqrt[3]{9} = \sqrt[3]{27} = 3\) 2. \(\sqrt[3]{3} \cdot \sqrt[3]{4} = \sqrt[3]{12}\) 3. \(-\sqrt[3]{3} \cdot \sqrt[3]{6} = -\sqrt[3]{18}\) 4. \(\sqrt[3]{2} \cdot \sqrt[3]{9} = \sqrt[3]{18}\) 5. \(\sqrt[3]{2} \cdot \sqrt[3]{4} = \sqrt[3]{8} = 2\) 6. \(-\sqrt[3]{2} \cdot \sqrt[3]{6} = -\sqrt[3]{12}\) So, we can rewrite the expression as: \[ 3 + \sqrt[3]{12} - \sqrt[3]{18} + \sqrt[3]{18} + 2 - \sqrt[3]{12} \] ### Step 3: Combine like terms Now, we combine the like terms: \[ 3 + 2 + (\sqrt[3]{12} - \sqrt[3]{12}) + (\sqrt[3]{18} - \sqrt[3]{18}) = 5 \] ### Final Answer Thus, the final answer is: \[ \boxed{5} \]
Promotional Banner

Topper's Solved these Questions

  • CUBES AND CUBE ROOTS

    MTG IIT JEE FOUNDATION|Exercise Exercise (Integer/Numerical Value Type) |10 Videos
  • COMPARING QUANTITIES

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Cornet|15 Videos
  • DATA HANDLING

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Corner|7 Videos

Similar Questions

Explore conceptually related problems

The value of (root3(125) xx root3(64))/(root3(125)-root3(64)) is

(root3(1.728)-root3(0.216))/(root3(2.197)-root3(0.343))=

root3(3(3)/8)=

(root(4)9+root(4)4)^(1//3)(root(4)9-root(4)4)^(1//3)=

root(3)(2) times root(6)(9)

Simplify : [root(3)root(6)(5^(9))]^(4)[root(3)root(6)(5^(9)]]^(4)

MTG IIT JEE FOUNDATION-CUBES AND CUBE ROOTS-Olympiad/HOTS Corner
  1. Simplify : (root6(27)-sqrt(6(3)/4))^(2)

    Text Solution

    |

  2. By what least number 3600 must be multiplied to make it a perfect cube...

    Text Solution

    |

  3. The value of sqrt(0.00001225/(0.00005329))-root3(sqrt0.000064) is

    Text Solution

    |

  4. Evalution : root3(-0.000008/(-0.000216))

    Text Solution

    |

  5. Evalution : root3(0.008)-root3(-512) +root3(2.197)

    Text Solution

    |

  6. (3root3(13824))/(2root3(-15625))+(2root3(-13824))/root3(5832)=

    Text Solution

    |

  7. Cube root of a number when divided by the smallest prime number gives ...

    Text Solution

    |

  8. If a number has digit 2 at unit place, then its cube has digit at its...

    Text Solution

    |

  9. Which of the following in incorrect?

    Text Solution

    |

  10. root(3)(1- 127/343) के बराबर है?

    Text Solution

    |

  11. If root3(x/729)+root3((8x)/729)+root3((27x)/5832)=1 , then find the va...

    Text Solution

    |

  12. (root3(3)+root3(2))(root3(9)+root3(4)-root3(6))=

    Text Solution

    |

  13. (root3(1.728)-root3(0.216))/(root3(2.197)-root3(0.343))=

    Text Solution

    |

  14. If 3^(9)+3^(12)+3^(15)+3^(n) is a perfect cube, n in N,then the value ...

    Text Solution

    |

  15. if x=root3(2(93)/125), then the value of x is

    Text Solution

    |

  16. if sqrtroot3(x xx 0.000009)=0.3 ,then the value of sqrtx is

    Text Solution

    |

  17. root3(1.728)/root3(13.824)xxroot3(4.096)/root3(216)=

    Text Solution

    |

  18. If root3(x/729)+root3((27x)/3375)=1, then find the value of x.

    Text Solution

    |

  19. if x=root3 (13(103)/125), then the value of x is

    Text Solution

    |

  20. Evaluate : root3(4096/64)+3root3(3375/125)

    Text Solution

    |