Home
Class 8
MATHS
(root3(1.728)-root3(0.216))/(root3(2.197...

`(root3(1.728)-root3(0.216))/(root3(2.197)-root3(0.343))=`

A

1

B

1

C

2

D

-2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((\sqrt[3]{1.728} - \sqrt[3]{0.216}) / (\sqrt[3]{2.197} - \sqrt[3]{0.343})\), we can follow these steps: ### Step 1: Rewrite the numbers in fractional form We can express the numbers under the cube roots as fractions: - \(1.728 = \frac{1728}{1000}\) - \(0.216 = \frac{216}{1000}\) - \(2.197 = \frac{2197}{1000}\) - \(0.343 = \frac{343}{1000}\) Thus, we can rewrite the expression as: \[ \frac{\sqrt[3]{\frac{1728}{1000}} - \sqrt[3]{\frac{216}{1000}}}{\sqrt[3]{\frac{2197}{1000}} - \sqrt[3]{\frac{343}{1000}}} \] ### Step 2: Factor out the common cube root We can factor out \(\sqrt[3]{1000}\) from both the numerator and the denominator: \[ = \frac{\frac{1}{\sqrt[3]{1000}} (\sqrt[3]{1728} - \sqrt[3]{216})}{\frac{1}{\sqrt[3]{1000}} (\sqrt[3]{2197} - \sqrt[3]{343})} \] This simplifies to: \[ = \frac{\sqrt[3]{1728} - \sqrt[3]{216}}{\sqrt[3]{2197} - \sqrt[3]{343}} \] ### Step 3: Calculate the cube roots Now we can calculate the cube roots: - \(\sqrt[3]{1728} = 12\) (since \(12^3 = 1728\)) - \(\sqrt[3]{216} = 6\) (since \(6^3 = 216\)) - \(\sqrt[3]{2197} = 13\) (since \(13^3 = 2197\)) - \(\sqrt[3]{343} = 7\) (since \(7^3 = 343\)) ### Step 4: Substitute the values back into the expression Now substituting these values back, we have: \[ = \frac{12 - 6}{13 - 7} \] ### Step 5: Simplify the expression Now, simplify the numerator and denominator: - Numerator: \(12 - 6 = 6\) - Denominator: \(13 - 7 = 6\) Thus, we have: \[ = \frac{6}{6} = 1 \] ### Final Answer The value of the expression is \(1\). ---
Promotional Banner

Topper's Solved these Questions

  • CUBES AND CUBE ROOTS

    MTG IIT JEE FOUNDATION|Exercise Exercise (Integer/Numerical Value Type) |10 Videos
  • COMPARING QUANTITIES

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Cornet|15 Videos
  • DATA HANDLING

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Corner|7 Videos

Similar Questions

Explore conceptually related problems

root3(3(3)/8)=

The value of (root3(125) xx root3(64))/(root3(125)-root3(64)) is

root3(1.728)/root3(13.824)xxroot3(4.096)/root3(216)=

(root3(3)+root3(2))(root3(9)+root3(4)-root3(6))=

root3(0.125)+3=

root3(3-17/27)=

root3((64)/(343))=?

root3(sin 2x)

MTG IIT JEE FOUNDATION-CUBES AND CUBE ROOTS-Olympiad/HOTS Corner
  1. Simplify : (root6(27)-sqrt(6(3)/4))^(2)

    Text Solution

    |

  2. By what least number 3600 must be multiplied to make it a perfect cube...

    Text Solution

    |

  3. The value of sqrt(0.00001225/(0.00005329))-root3(sqrt0.000064) is

    Text Solution

    |

  4. Evalution : root3(-0.000008/(-0.000216))

    Text Solution

    |

  5. Evalution : root3(0.008)-root3(-512) +root3(2.197)

    Text Solution

    |

  6. (3root3(13824))/(2root3(-15625))+(2root3(-13824))/root3(5832)=

    Text Solution

    |

  7. Cube root of a number when divided by the smallest prime number gives ...

    Text Solution

    |

  8. If a number has digit 2 at unit place, then its cube has digit at its...

    Text Solution

    |

  9. Which of the following in incorrect?

    Text Solution

    |

  10. root(3)(1- 127/343) के बराबर है?

    Text Solution

    |

  11. If root3(x/729)+root3((8x)/729)+root3((27x)/5832)=1 , then find the va...

    Text Solution

    |

  12. (root3(3)+root3(2))(root3(9)+root3(4)-root3(6))=

    Text Solution

    |

  13. (root3(1.728)-root3(0.216))/(root3(2.197)-root3(0.343))=

    Text Solution

    |

  14. If 3^(9)+3^(12)+3^(15)+3^(n) is a perfect cube, n in N,then the value ...

    Text Solution

    |

  15. if x=root3(2(93)/125), then the value of x is

    Text Solution

    |

  16. if sqrtroot3(x xx 0.000009)=0.3 ,then the value of sqrtx is

    Text Solution

    |

  17. root3(1.728)/root3(13.824)xxroot3(4.096)/root3(216)=

    Text Solution

    |

  18. If root3(x/729)+root3((27x)/3375)=1, then find the value of x.

    Text Solution

    |

  19. if x=root3 (13(103)/125), then the value of x is

    Text Solution

    |

  20. Evaluate : root3(4096/64)+3root3(3375/125)

    Text Solution

    |