Home
Class 8
MATHS
If 3^(9)+3^(12)+3^(15)+3^(n) is a perfec...

If `3^(9)+3^(12)+3^(15)+3^(n)` is a perfect cube, `n in N`,then the value of n is

A

18

B

17

C

14

D

16

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the value of \( n \) such that the expression \( 3^9 + 3^{12} + 3^{15} + 3^n \) is a perfect cube, where \( n \) is a natural number. ### Step-by-Step Solution: 1. **Rewrite the Expression**: We start with the expression: \[ 3^9 + 3^{12} + 3^{15} + 3^n \] We can factor out the smallest power of 3, which is \( 3^9 \): \[ 3^9(1 + 3^3 + 3^6 + 3^{n-9}) \] 2. **Simplify the Expression Inside the Parentheses**: Next, we simplify the terms inside the parentheses: \[ 1 + 3^3 + 3^6 = 1 + 27 + 729 = 757 \] So, we can rewrite our expression as: \[ 3^9(757 + 3^{n-9}) \] 3. **Set the Expression to be a Perfect Cube**: For the entire expression \( 3^9(757 + 3^{n-9}) \) to be a perfect cube, both \( 3^9 \) and \( 757 + 3^{n-9} \) must be perfect cubes. Since \( 3^9 = (3^3)^3 \), it is already a perfect cube. Therefore, we need to ensure that \( 757 + 3^{n-9} \) is also a perfect cube. 4. **Let \( 757 + 3^{n-9} = k^3 \)**: We can set up the equation: \[ 3^{n-9} = k^3 - 757 \] where \( k \) is some integer. 5. **Find Possible Values of \( k \)**: We need \( k^3 \) to be greater than 757. The smallest integer \( k \) that satisfies this is \( k = 10 \) because \( 10^3 = 1000 \). 6. **Calculate \( n \) for \( k = 10 \)**: Plugging \( k = 10 \) into the equation gives: \[ 3^{n-9} = 1000 - 757 = 243 \] Since \( 243 = 3^5 \), we have: \[ n - 9 = 5 \] Therefore: \[ n = 14 \] 7. **Conclusion**: The value of \( n \) that makes the expression a perfect cube is: \[ \boxed{14} \]
Promotional Banner

Topper's Solved these Questions

  • CUBES AND CUBE ROOTS

    MTG IIT JEE FOUNDATION|Exercise Exercise (Integer/Numerical Value Type) |10 Videos
  • COMPARING QUANTITIES

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Cornet|15 Videos
  • DATA HANDLING

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Corner|7 Videos

Similar Questions

Explore conceptually related problems

3*3^(n)=3 then the value of n

If 9^(n) = (9)/(3^(n)) , the value of n is

If 3^(2n - 1) = 1/(27^(n - 3)) , then the value of n is

If sum_(n,)n,(sqrt(10))/(3)sum n^(2),sum n^(3) are in GP,then the value of n is

If 3^(2n-1)= (1)/(27^(n-3)) , then the value of n is

If (sqrt(3))^(5) xx 9^(2) =3^(n) xx 3sqrt(3) , then what is the value of n?

MTG IIT JEE FOUNDATION-CUBES AND CUBE ROOTS-Olympiad/HOTS Corner
  1. Simplify : (root6(27)-sqrt(6(3)/4))^(2)

    Text Solution

    |

  2. By what least number 3600 must be multiplied to make it a perfect cube...

    Text Solution

    |

  3. The value of sqrt(0.00001225/(0.00005329))-root3(sqrt0.000064) is

    Text Solution

    |

  4. Evalution : root3(-0.000008/(-0.000216))

    Text Solution

    |

  5. Evalution : root3(0.008)-root3(-512) +root3(2.197)

    Text Solution

    |

  6. (3root3(13824))/(2root3(-15625))+(2root3(-13824))/root3(5832)=

    Text Solution

    |

  7. Cube root of a number when divided by the smallest prime number gives ...

    Text Solution

    |

  8. If a number has digit 2 at unit place, then its cube has digit at its...

    Text Solution

    |

  9. Which of the following in incorrect?

    Text Solution

    |

  10. root(3)(1- 127/343) के बराबर है?

    Text Solution

    |

  11. If root3(x/729)+root3((8x)/729)+root3((27x)/5832)=1 , then find the va...

    Text Solution

    |

  12. (root3(3)+root3(2))(root3(9)+root3(4)-root3(6))=

    Text Solution

    |

  13. (root3(1.728)-root3(0.216))/(root3(2.197)-root3(0.343))=

    Text Solution

    |

  14. If 3^(9)+3^(12)+3^(15)+3^(n) is a perfect cube, n in N,then the value ...

    Text Solution

    |

  15. if x=root3(2(93)/125), then the value of x is

    Text Solution

    |

  16. if sqrtroot3(x xx 0.000009)=0.3 ,then the value of sqrtx is

    Text Solution

    |

  17. root3(1.728)/root3(13.824)xxroot3(4.096)/root3(216)=

    Text Solution

    |

  18. If root3(x/729)+root3((27x)/3375)=1, then find the value of x.

    Text Solution

    |

  19. if x=root3 (13(103)/125), then the value of x is

    Text Solution

    |

  20. Evaluate : root3(4096/64)+3root3(3375/125)

    Text Solution

    |