Home
Class 8
MATHS
if x=root3(2(93)/125), then the value of...

if `x=root3(2(93)/125)`, then the value of x is

A

`2(1)/5`

B

`1(2)/5`

C

`3(4)/5`

D

`4(1)/5`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( x = \sqrt[3]{\frac{2^{93}}{125}} \), we can follow these steps: ### Step-by-Step Solution: 1. **Rewrite the expression**: \[ x = \sqrt[3]{\frac{2^{93}}{125}} \] 2. **Recognize that 125 is a power of 5**: \[ 125 = 5^3 \] So we can rewrite the expression as: \[ x = \sqrt[3]{\frac{2^{93}}{5^3}} \] 3. **Split the cube root**: Using the property of cube roots, we can separate the numerator and denominator: \[ x = \frac{\sqrt[3]{2^{93}}}{\sqrt[3]{5^3}} \] 4. **Simplify the denominator**: The cube root of \( 5^3 \) is simply 5: \[ x = \frac{\sqrt[3]{2^{93}}}{5} \] 5. **Simplify the numerator**: The cube root of \( 2^{93} \) can be simplified using the property of exponents: \[ \sqrt[3]{2^{93}} = 2^{93/3} = 2^{31} \] Thus, we have: \[ x = \frac{2^{31}}{5} \] 6. **Final value of x**: Therefore, the value of \( x \) is: \[ x = \frac{2^{31}}{5} \]
Promotional Banner

Topper's Solved these Questions

  • CUBES AND CUBE ROOTS

    MTG IIT JEE FOUNDATION|Exercise Exercise (Integer/Numerical Value Type) |10 Videos
  • COMPARING QUANTITIES

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Cornet|15 Videos
  • DATA HANDLING

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Corner|7 Videos

Similar Questions

Explore conceptually related problems

if x=root3 (13(103)/125) , then the value of x is

if root3(x-12)=19 ,then the value of x is

if root3((156+x))=12 ,them the value of x is

If 5^(root(3)(x))+12^(root(3)(x))= 13^(root(3)(x)) , then the value of x is: अगर 5^(root(3)(x))+12^(root(3)(x))= 13^(root(3)(x)) है, तो x का मान होगा:

If 5^(root(3)(x))+12^(root(3)(x))=13^(root(3)(x)) , then the value of x is : यदि 5^(root(3)(x))+12^(root(3)(x))=13^(root(3)(x)) है, तो x का मान ज्ञात करें |

If (125)^x = 3125 , then the value of x is

If 3^(root(3)(x))+4^(root(3)(x))= 5^(root(3)(x)) then what is the value of x is? यदि 3^(root(3)(x))+4^(root(3)(x))= 5^(root(3)(x)) है तो x का मान क्या है?

Write the value of 125x273

MTG IIT JEE FOUNDATION-CUBES AND CUBE ROOTS-Olympiad/HOTS Corner
  1. Simplify : (root6(27)-sqrt(6(3)/4))^(2)

    Text Solution

    |

  2. By what least number 3600 must be multiplied to make it a perfect cube...

    Text Solution

    |

  3. The value of sqrt(0.00001225/(0.00005329))-root3(sqrt0.000064) is

    Text Solution

    |

  4. Evalution : root3(-0.000008/(-0.000216))

    Text Solution

    |

  5. Evalution : root3(0.008)-root3(-512) +root3(2.197)

    Text Solution

    |

  6. (3root3(13824))/(2root3(-15625))+(2root3(-13824))/root3(5832)=

    Text Solution

    |

  7. Cube root of a number when divided by the smallest prime number gives ...

    Text Solution

    |

  8. If a number has digit 2 at unit place, then its cube has digit at its...

    Text Solution

    |

  9. Which of the following in incorrect?

    Text Solution

    |

  10. root(3)(1- 127/343) के बराबर है?

    Text Solution

    |

  11. If root3(x/729)+root3((8x)/729)+root3((27x)/5832)=1 , then find the va...

    Text Solution

    |

  12. (root3(3)+root3(2))(root3(9)+root3(4)-root3(6))=

    Text Solution

    |

  13. (root3(1.728)-root3(0.216))/(root3(2.197)-root3(0.343))=

    Text Solution

    |

  14. If 3^(9)+3^(12)+3^(15)+3^(n) is a perfect cube, n in N,then the value ...

    Text Solution

    |

  15. if x=root3(2(93)/125), then the value of x is

    Text Solution

    |

  16. if sqrtroot3(x xx 0.000009)=0.3 ,then the value of sqrtx is

    Text Solution

    |

  17. root3(1.728)/root3(13.824)xxroot3(4.096)/root3(216)=

    Text Solution

    |

  18. If root3(x/729)+root3((27x)/3375)=1, then find the value of x.

    Text Solution

    |

  19. if x=root3 (13(103)/125), then the value of x is

    Text Solution

    |

  20. Evaluate : root3(4096/64)+3root3(3375/125)

    Text Solution

    |