Home
Class 8
MATHS
if sqrtroot3(x xx 0.000009)=0.3 ,then th...

if `sqrtroot3(x xx 0.000009)=0.3` ,then the value of `sqrtx` is

A

27

B

81

C

9

D

18

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sqrt[3]{x \times 0.000009} = 0.3 \), we will follow these steps: ### Step 1: Write the given equation We start with the equation: \[ \sqrt[3]{x \times 0.000009} = 0.3 \] ### Step 2: Square both sides To eliminate the cube root, we will cube both sides of the equation: \[ x \times 0.000009 = (0.3)^3 \] ### Step 3: Calculate \( (0.3)^3 \) Calculating \( (0.3)^3 \): \[ (0.3)^3 = 0.3 \times 0.3 \times 0.3 = 0.027 \] So we have: \[ x \times 0.000009 = 0.027 \] ### Step 4: Solve for \( x \) Now, we will isolate \( x \) by dividing both sides by \( 0.000009 \): \[ x = \frac{0.027}{0.000009} \] ### Step 5: Simplify the fraction To simplify \( \frac{0.027}{0.000009} \), we can multiply the numerator and the denominator by \( 1000000 \) (to eliminate the decimals): \[ x = \frac{0.027 \times 1000000}{0.000009 \times 1000000} = \frac{27000}{9} \] Calculating \( \frac{27000}{9} \): \[ x = 3000 \] ### Step 6: Find \( \sqrt{x} \) Now we need to find \( \sqrt{x} \): \[ \sqrt{x} = \sqrt{3000} \] ### Step 7: Simplify \( \sqrt{3000} \) We can simplify \( \sqrt{3000} \): \[ \sqrt{3000} = \sqrt{300 \times 10} = \sqrt{300} \times \sqrt{10} \] Breaking down \( \sqrt{300} \): \[ \sqrt{300} = \sqrt{100 \times 3} = 10\sqrt{3} \] Thus: \[ \sqrt{3000} = 10\sqrt{3} \times \sqrt{10} = 10\sqrt{30} \] ### Final Answer So, the value of \( \sqrt{x} \) is: \[ \sqrt{x} = 10\sqrt{30} \] ---
Promotional Banner

Topper's Solved these Questions

  • CUBES AND CUBE ROOTS

    MTG IIT JEE FOUNDATION|Exercise Exercise (Integer/Numerical Value Type) |10 Videos
  • COMPARING QUANTITIES

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Cornet|15 Videos
  • DATA HANDLING

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Corner|7 Videos

Similar Questions

Explore conceptually related problems

Simplify sqrtroot3(0.000729)

root(2)(root(3)(x xx0.000001))=0.2 . The value of x is

If x = 2 + sqrt3 then the value of sqrtx + 1/sqrtx is

If (3(x^2 +1)-7x)/3x =6, x ≠ 0 , then the value of sqrtx + 1/(sqrtx) is: यदि (3(x^2 +1)-7x)/3x =6, x ≠ 0 , है, तो sqrtx + 1/(sqrtx) का मान क्या होगा?

If sqrtx+(1)/(sqrtx)=3 , then the value of x^3+(1)/(x^3) is:

If x=3-sqrt8," then find the value of "1/sqrtx-sqrtx .

If (3(x^2+1)-7x)/(3x)=6, x ne 0 then the value of sqrtx+1/sqrtx is: यदि (3(x^2+1)-7x)/(3x)=6, x ne 0 है, तो sqrtx+1/sqrtx का मान ज्ञात करें |

If 0.3x -0.37 = 0.37x -0.3, then x has the value

MTG IIT JEE FOUNDATION-CUBES AND CUBE ROOTS-Olympiad/HOTS Corner
  1. Simplify : (root6(27)-sqrt(6(3)/4))^(2)

    Text Solution

    |

  2. By what least number 3600 must be multiplied to make it a perfect cube...

    Text Solution

    |

  3. The value of sqrt(0.00001225/(0.00005329))-root3(sqrt0.000064) is

    Text Solution

    |

  4. Evalution : root3(-0.000008/(-0.000216))

    Text Solution

    |

  5. Evalution : root3(0.008)-root3(-512) +root3(2.197)

    Text Solution

    |

  6. (3root3(13824))/(2root3(-15625))+(2root3(-13824))/root3(5832)=

    Text Solution

    |

  7. Cube root of a number when divided by the smallest prime number gives ...

    Text Solution

    |

  8. If a number has digit 2 at unit place, then its cube has digit at its...

    Text Solution

    |

  9. Which of the following in incorrect?

    Text Solution

    |

  10. root(3)(1- 127/343) के बराबर है?

    Text Solution

    |

  11. If root3(x/729)+root3((8x)/729)+root3((27x)/5832)=1 , then find the va...

    Text Solution

    |

  12. (root3(3)+root3(2))(root3(9)+root3(4)-root3(6))=

    Text Solution

    |

  13. (root3(1.728)-root3(0.216))/(root3(2.197)-root3(0.343))=

    Text Solution

    |

  14. If 3^(9)+3^(12)+3^(15)+3^(n) is a perfect cube, n in N,then the value ...

    Text Solution

    |

  15. if x=root3(2(93)/125), then the value of x is

    Text Solution

    |

  16. if sqrtroot3(x xx 0.000009)=0.3 ,then the value of sqrtx is

    Text Solution

    |

  17. root3(1.728)/root3(13.824)xxroot3(4.096)/root3(216)=

    Text Solution

    |

  18. If root3(x/729)+root3((27x)/3375)=1, then find the value of x.

    Text Solution

    |

  19. if x=root3 (13(103)/125), then the value of x is

    Text Solution

    |

  20. Evaluate : root3(4096/64)+3root3(3375/125)

    Text Solution

    |