Home
Class 8
MATHS
root3(1.728)/root3(13.824)xxroot3(4.096)...

`root3(1.728)/root3(13.824)xxroot3(4.096)/root3(216)=`

A

`15/8`

B

`4/15`

C

`2/15`

D

`16/4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \frac{\sqrt[3]{1.728}}{\sqrt[3]{13.824}} \times \frac{\sqrt[3]{4.096}}{\sqrt[3]{216}} \), we will simplify each cube root step by step. ### Step 1: Simplify Each Cube Root 1. **Calculate \( \sqrt[3]{1.728} \)**: - We can express 1.728 as \( 1.728 = \frac{1728}{1000} \). - Since \( 1728 = 12^3 \) and \( 1000 = 10^3 \), we have: \[ \sqrt[3]{1.728} = \frac{\sqrt[3]{1728}}{\sqrt[3]{1000}} = \frac{12}{10} = 1.2 \] 2. **Calculate \( \sqrt[3]{13.824} \)**: - We can express 13.824 as \( 13.824 = \frac{13824}{1000} \). - Since \( 13824 = 24^3 \) and \( 1000 = 10^3 \), we have: \[ \sqrt[3]{13.824} = \frac{\sqrt[3]{13824}}{\sqrt[3]{1000}} = \frac{24}{10} = 2.4 \] 3. **Calculate \( \sqrt[3]{4.096} \)**: - We can express 4.096 as \( 4.096 = \frac{4096}{1000} \). - Since \( 4096 = 16^3 \) and \( 1000 = 10^3 \), we have: \[ \sqrt[3]{4.096} = \frac{\sqrt[3]{4096}}{\sqrt[3]{1000}} = \frac{16}{10} = 1.6 \] 4. **Calculate \( \sqrt[3]{216} \)**: - Since \( 216 = 6^3 \), we have: \[ \sqrt[3]{216} = 6 \] ### Step 2: Substitute Back into the Expression Now substituting the simplified values back into the expression: \[ \frac{\sqrt[3]{1.728}}{\sqrt[3]{13.824}} \times \frac{\sqrt[3]{4.096}}{\sqrt[3]{216}} = \frac{1.2}{2.4} \times \frac{1.6}{6} \] ### Step 3: Simplify the Expression 1. **Calculate \( \frac{1.2}{2.4} \)**: \[ \frac{1.2}{2.4} = \frac{1.2 \div 1.2}{2.4 \div 1.2} = \frac{1}{2} = 0.5 \] 2. **Calculate \( \frac{1.6}{6} \)**: \[ \frac{1.6}{6} = \frac{1.6 \div 1.6}{6 \div 1.6} = \frac{1}{3.75} \approx 0.267 \] 3. **Combine the Results**: \[ 0.5 \times 0.267 = 0.1335 \] ### Final Result Thus, the final result of the expression is approximately \( 0.1335 \).
Promotional Banner

Topper's Solved these Questions

  • CUBES AND CUBE ROOTS

    MTG IIT JEE FOUNDATION|Exercise Exercise (Integer/Numerical Value Type) |10 Videos
  • COMPARING QUANTITIES

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Cornet|15 Videos
  • DATA HANDLING

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Corner|7 Videos

Similar Questions

Explore conceptually related problems

(root3(1.728)-root3(0.216))/(root3(2.197)-root3(0.343))=

root3(3-17/27)=

root3(3(3)/8)=

(3root3(13824))/(2root3(-15625))+(2root3(-13824))/root3(5832)=

Consider L=root3(2012)+root3(2013)+....+root3(3011) R=root3(2013)+root3(2014)+.....+root3(3012) and I=int_(2012)^(3012)root3(x)"dx" Then -

root3(216 xx 64)=?

root(3)(6)xxroot(3)(6)xxroot(3)(6) =_______

(root3(3)+root3(2))(root3(9)+root3(4)-root3(6))=

root3(0.125)+3=

root(3)(1331)xx root(3)(216)+root(3)(729)+root(3)(64) is equal to

MTG IIT JEE FOUNDATION-CUBES AND CUBE ROOTS-Olympiad/HOTS Corner
  1. Simplify : (root6(27)-sqrt(6(3)/4))^(2)

    Text Solution

    |

  2. By what least number 3600 must be multiplied to make it a perfect cube...

    Text Solution

    |

  3. The value of sqrt(0.00001225/(0.00005329))-root3(sqrt0.000064) is

    Text Solution

    |

  4. Evalution : root3(-0.000008/(-0.000216))

    Text Solution

    |

  5. Evalution : root3(0.008)-root3(-512) +root3(2.197)

    Text Solution

    |

  6. (3root3(13824))/(2root3(-15625))+(2root3(-13824))/root3(5832)=

    Text Solution

    |

  7. Cube root of a number when divided by the smallest prime number gives ...

    Text Solution

    |

  8. If a number has digit 2 at unit place, then its cube has digit at its...

    Text Solution

    |

  9. Which of the following in incorrect?

    Text Solution

    |

  10. root(3)(1- 127/343) के बराबर है?

    Text Solution

    |

  11. If root3(x/729)+root3((8x)/729)+root3((27x)/5832)=1 , then find the va...

    Text Solution

    |

  12. (root3(3)+root3(2))(root3(9)+root3(4)-root3(6))=

    Text Solution

    |

  13. (root3(1.728)-root3(0.216))/(root3(2.197)-root3(0.343))=

    Text Solution

    |

  14. If 3^(9)+3^(12)+3^(15)+3^(n) is a perfect cube, n in N,then the value ...

    Text Solution

    |

  15. if x=root3(2(93)/125), then the value of x is

    Text Solution

    |

  16. if sqrtroot3(x xx 0.000009)=0.3 ,then the value of sqrtx is

    Text Solution

    |

  17. root3(1.728)/root3(13.824)xxroot3(4.096)/root3(216)=

    Text Solution

    |

  18. If root3(x/729)+root3((27x)/3375)=1, then find the value of x.

    Text Solution

    |

  19. if x=root3 (13(103)/125), then the value of x is

    Text Solution

    |

  20. Evaluate : root3(4096/64)+3root3(3375/125)

    Text Solution

    |