Home
Class 8
MATHS
If root3(x/729)+root3((27x)/3375)=1, the...

If `root3(x/729)+root3((27x)/3375)=1`, then find the value of x.

A

`(79507)/(3375)`

B

`(91125)/(2744)`

C

`(2025)/(196)`

D

`(443)/(125)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sqrt[3]{\frac{x}{729}} + \sqrt[3]{\frac{27x}{3375}} = 1 \), we will follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ \sqrt[3]{\frac{x}{729}} + \sqrt[3]{\frac{27x}{3375}} = 1 \] ### Step 2: Factor out the cube roots We can factor out \( \sqrt[3]{x} \) from both terms: \[ \sqrt[3]{x} \left( \sqrt[3]{\frac{1}{729}} + \sqrt[3]{\frac{27}{3375}} \right) = 1 \] ### Step 3: Simplify the cube roots Next, we simplify the cube roots: - \( \sqrt[3]{729} = 9 \) because \( 9^3 = 729 \) - \( \sqrt[3]{3375} = 15 \) because \( 15^3 = 3375 \) - \( \sqrt[3]{27} = 3 \) because \( 3^3 = 27 \) Thus, we have: \[ \sqrt[3]{\frac{1}{729}} = \frac{1}{9}, \quad \sqrt[3]{\frac{27}{3375}} = \frac{3}{15} = \frac{1}{5} \] ### Step 4: Substitute back into the equation Now substituting these values back into the equation gives us: \[ \sqrt[3]{x} \left( \frac{1}{9} + \frac{1}{5} \right) = 1 \] ### Step 5: Find a common denominator To add \( \frac{1}{9} \) and \( \frac{1}{5} \), we find a common denominator, which is 45: \[ \frac{1}{9} = \frac{5}{45}, \quad \frac{1}{5} = \frac{9}{45} \] Thus, \[ \frac{1}{9} + \frac{1}{5} = \frac{5}{45} + \frac{9}{45} = \frac{14}{45} \] ### Step 6: Substitute back into the equation Now we substitute back: \[ \sqrt[3]{x} \cdot \frac{14}{45} = 1 \] ### Step 7: Solve for \( \sqrt[3]{x} \) To isolate \( \sqrt[3]{x} \), we multiply both sides by \( \frac{45}{14} \): \[ \sqrt[3]{x} = \frac{45}{14} \] ### Step 8: Cube both sides to find \( x \) Now we cube both sides to find \( x \): \[ x = \left( \frac{45}{14} \right)^3 = \frac{45^3}{14^3} \] Calculating \( 45^3 \) and \( 14^3 \): \[ 45^3 = 91125, \quad 14^3 = 2744 \] Thus, \[ x = \frac{91125}{2744} \] ### Final Answer The value of \( x \) is: \[ x = \frac{91125}{2744} \]
Promotional Banner

Topper's Solved these Questions

  • CUBES AND CUBE ROOTS

    MTG IIT JEE FOUNDATION|Exercise Exercise (Integer/Numerical Value Type) |10 Videos
  • COMPARING QUANTITIES

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Cornet|15 Videos
  • DATA HANDLING

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Corner|7 Videos

Similar Questions

Explore conceptually related problems

If root3(x/729)+root3((8x)/729)+root3((27x)/5832)=1 , then find the valueof x.

if x=root3(2(93)/125) , then the value of x is

if x=root3 (13(103)/125) , then the value of x is

if root3((156+x))=12 ,them the value of x is

root3((-512)/(729))=?

If (sqrt(x))/(sqrt(0.0064))=root3(0.008) , then find the value of x.

If 3^(root(3)(x))+4^(root(3)(x))= 5^(root(3)(x)) then what is the value of x is? यदि 3^(root(3)(x))+4^(root(3)(x))= 5^(root(3)(x)) है तो x का मान क्या है?

if root3(x-12)=19 ,then the value of x is

If 5^(root(3)(x))+12^(root(3)(x))= 13^(root(3)(x)) , then the value of x is: अगर 5^(root(3)(x))+12^(root(3)(x))= 13^(root(3)(x)) है, तो x का मान होगा:

MTG IIT JEE FOUNDATION-CUBES AND CUBE ROOTS-Olympiad/HOTS Corner
  1. Simplify : (root6(27)-sqrt(6(3)/4))^(2)

    Text Solution

    |

  2. By what least number 3600 must be multiplied to make it a perfect cube...

    Text Solution

    |

  3. The value of sqrt(0.00001225/(0.00005329))-root3(sqrt0.000064) is

    Text Solution

    |

  4. Evalution : root3(-0.000008/(-0.000216))

    Text Solution

    |

  5. Evalution : root3(0.008)-root3(-512) +root3(2.197)

    Text Solution

    |

  6. (3root3(13824))/(2root3(-15625))+(2root3(-13824))/root3(5832)=

    Text Solution

    |

  7. Cube root of a number when divided by the smallest prime number gives ...

    Text Solution

    |

  8. If a number has digit 2 at unit place, then its cube has digit at its...

    Text Solution

    |

  9. Which of the following in incorrect?

    Text Solution

    |

  10. root(3)(1- 127/343) के बराबर है?

    Text Solution

    |

  11. If root3(x/729)+root3((8x)/729)+root3((27x)/5832)=1 , then find the va...

    Text Solution

    |

  12. (root3(3)+root3(2))(root3(9)+root3(4)-root3(6))=

    Text Solution

    |

  13. (root3(1.728)-root3(0.216))/(root3(2.197)-root3(0.343))=

    Text Solution

    |

  14. If 3^(9)+3^(12)+3^(15)+3^(n) is a perfect cube, n in N,then the value ...

    Text Solution

    |

  15. if x=root3(2(93)/125), then the value of x is

    Text Solution

    |

  16. if sqrtroot3(x xx 0.000009)=0.3 ,then the value of sqrtx is

    Text Solution

    |

  17. root3(1.728)/root3(13.824)xxroot3(4.096)/root3(216)=

    Text Solution

    |

  18. If root3(x/729)+root3((27x)/3375)=1, then find the value of x.

    Text Solution

    |

  19. if x=root3 (13(103)/125), then the value of x is

    Text Solution

    |

  20. Evaluate : root3(4096/64)+3root3(3375/125)

    Text Solution

    |