Home
Class 10
MATHS
Show that: ((a+1/b)^m x\ (a-1/b)^n)/((b+...

Show that: `((a+1/b)^m x\ (a-1/b)^n)/((b+1/a)^m\ x\ (b-1/a)^n)=(a/b)^(m+n)`

A

`((a)/(b))^(m-n)`

B

`((a)/(b))^(m+n)`

C

`((b)/(a))^(m//n)`

D

`((b)/(a))^(mn)`

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • REAL NUMBERS

    MTG IIT JEE FOUNDATION|Exercise Exercise (Subjective Problems) ( Integer/Numerical Value Type)|10 Videos
  • QUADRATIC EQUATIONS

    MTG IIT JEE FOUNDATION|Exercise OLYMPAID/HOTS CORNER|15 Videos
  • SOME APPLICATIONS OF TRIGONOMETRY

    MTG IIT JEE FOUNDATION|Exercise OLYMPIAD /HOTS CORNER |20 Videos

Similar Questions

Explore conceptually related problems

Find n so that: (i) (a^(n+1)+b^(n+1))/(a^(n)+b^(n)) (ii) (a^(n)+b^(n))/(a^(n-1)+b^(n-10) may be A.M. between a and b.

The cofficient of x^(n) in (x)/((x-a)(x-b)) is (a^(n)-b^(n))/(a-b)xx(1)/(a^(n)b^(n))

The value of int_(a)^(b)(x-a)^(3)(b-x)^(4)dx is ((b-a)^(m))/(n). Then (m, n) is

(1)/(1+a^(m-m))+(1)/(1+a^(m-n))=? a.0 b.(1)/(2) c.1

If the expansion in powers of x of the function 1/[(1-ax)(1-bx)] is a a_(0)+a_(1)x+a_(2)x^(2)+a_(3)x^(3)+..., then a_(n) is (b^(n)-a^(n))/(b-a) b.(a^(n)-b^(n))/(b-a) c.(b^(n+1)-a^(n+1))/(b-a) d.(a^(n+1)-b^(n+1))/(b-a)

lim_(x rarr0)((2^(m)+x)^((1)/(m))-(2^(n)+x)^((1)/(n)))/(x) is equal to (1)/(m2^(m))-(1)/(n2^(n)) (b) (1)/(m2^(m))+(1)/(n2^(n))(1)/(m2^(-m))-(1)/(n2^(-n))( d) (1)/(m2^(-m))+(1)/(n2^(-n))