Home
Class 10
MATHS
In Fig. 4.220, D is the mid-point ...

In Fig. 4.220, `D` is the mid-point of side `B C` and `A E_|_B C` . If `B C=a ,\ \ A C=b ,\ \ A B=c ,\ \ E D=x ,\ \ A D=p` and `A E=p` and `A E=h` , prove that: (FIGURE) `b^2=p^2+a x+(a^2)/4` (ii) `c^2=p^2-a x+(a^2)/4` (iii) `b^2+c^2=2\ p^2+(a^2)/2`

A

`{:(P,Q,R),(a^(2)x,a^(2)//2,2p^(2)):}`

B

`{:(P,Q,R),(ax,a^(4)//2,4p^(2)):}`

C

`{:(P,Q,R),(ax,a^(4)//2,2p^(2)):}`

D

`{:(P,Q,R),(a^(2)x,a^(2)//2,2p):}`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • TRIANGLES

    MTG IIT JEE FOUNDATION|Exercise Exercise (Integer Numerical Value Type)|10 Videos
  • SURFACE AREAS AND VOLUMES

    MTG IIT JEE FOUNDATION|Exercise OLYMPIAD/HOTS CORNER|20 Videos

Similar Questions

Explore conceptually related problems

In the given figure, D is the midpoint of side BC and AE bot BC . If BC=a, AC =b, AB= c, ED =x AD=p and AE =h prove that (i) b^(2)=p^(2)+ax +(a^(2))/(4) (ii) c^(2)=p^(2)-ax+(a^(2))/(4) (iii) (b^(2)+c^(2))=2p^(2)+(1)/(2)a^(2) (iv) (b^(2)-c^(2))=2ax .

In a A B C , D and E are points on A B and A C respectively such that D E// B C . If A D=2. 4 c m ,\ \ A E=3. 2 c m ,\ \ D E=2c m and B C=5c m , find B D and C E .

P is the mid-point of side A B of a parallelogram A B C D . A line through B parallel to P D meets D C at Q\ a n d\ A D produced at Rdot Prove that: A R=2B C (ii) B R=2\ B Q

In Fig. 4.95, if /_A D E=/_B show that A D E ~ A B C . If A D=3. 8 c m , A E=3. 6 c m , B E=2. 1 c m and B C=4. 2 c m , find D E . (FIGURE)

If A : B = 1 : 2, B : C = 3 : 4, C : D = 2 : 3 and D : E = 3 : 4, then what is B : E equal to ?

If a,b,c,d are in G.P.prove that: (ab-cd)/(b^(2)-c^(2))=(a+c)/(b)

In a A B C ,\ D ,\ E ,\ F are the mi-points of sides B C ,\ C A\ a n d\ A B respectively. If a r( A B C)=16 c m^2, then a r\ (t r a p e z i u m\ F B C E)= 4\ c m^2 (b) 8\ c m^2 (c) 12 c m^2 (d) 10 c m^2

If a, b, c, d are in G.P., then prove that: (b-c)^(2)+(c-a)^(2)+(d-b)^(2)=(a-d)^(2)

In Fig. 4.128, D E F G is a square and /_B A C=90o . Prove that A G F D B G (ii) A G F E F C (FIGURE) (iii) D B G E F C (iv) D E^2=B DxxE C