Home
Class 12
MATHS
If vec(a) is a unit vector such that (ve...

If `vec(a)` is a unit vector such that `(vec(x) - vec(a)).(vec(x) + vec(a)) = 8` find `|vec(x)|`.

Answer

Step by step text solution for If vec(a) is a unit vector such that (vec(x) - vec(a)).(vec(x) + vec(a)) = 8 find |vec(x)|. by MATHS experts to help you in doubts & scoring excellent marks in Class 12 exams.

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • VECTOR ALGEBRA

    OSWAAL PUBLICATION|Exercise Topic - 2 (Short Answer Type Questions - II)|12 Videos
  • VECTOR ALGEBRA

    OSWAAL PUBLICATION|Exercise Topic - 3|13 Videos
  • VECTOR ALGEBRA

    OSWAAL PUBLICATION|Exercise Topic - 1 (Short Answer Type Questions - II)|6 Videos
  • THREE DIMENSIONAL GEOMETRY

    OSWAAL PUBLICATION|Exercise Topic - 3 (Long answer type questions - II)|23 Videos

Similar Questions

Explore conceptually related problems

Find |vec(x)| , if for a unit vector vec(a), (vec(x) +vec(a))(vec(x) - vec(a)) = 15 .

Find |x| , if for a unit vector a, (vec(x)-vec(a)).(vec(x)+vec(a))=12 .

Knowledge Check

  • If vec(a), vec(b), vec(c ) are unit vectors such that vec(a) + vec(b) + vec(c )= vec(0), " then " vec(a).vec(b) + vec(b).vec(c ) + vec(c ).vec(a) =

    A
    `(3)/(2)`
    B
    `-(3)/(2)`
    C
    `(2)/(3)`
    D
    `(1)/(2)`
  • If vec(a),vec(b) and vec(c) are unit vectors such that vec(a)+vec(b)+vec(c)=0 , then 3vec(a).vec(b)+2vec(b).vec(c)+vec(c).vec(a)=

    A
    1
    B
    `-1`
    C
    3
    D
    `-3`
  • If vec(a),vec(b),vec(c ) are unit vectors such that vec(a)+vec(b)+vec(c )=0 , then the value of vec(a).vec(b)+vec(b).vec(c )+vec(c ).vec(a) is equal to

    A
    1
    B
    3
    C
    `-(3)/(2)`
    D
    `(3)/(2)`
  • Similar Questions

    Explore conceptually related problems

    If vec(a), vec(b)" and "vec(c) are three unit vectors such that vec(a)+vec(b)+vec(c)=vec(O) , find the value of vec(a).vec(b)+vec(b).vec(c)+vec(c).vec(a) .

    If two vectors vec(a) and vec(b) such that |vec(a)| = 2|vec(b)| = 3 and vec(a).vec(b) = 6 , find |vec(a)-vec(b)| .

    Vectors vec(a), vec(b) and vec(c ) are such that vec(a) + vec(b) + vec(c ) = 0 and |vec(a)| = 3, |vec(b)| = 5 and |vec(c )| = 7 . Find the angle between vec(a) and vec(b) .

    If vec(a), vec(b) and vec(c ) are three unit vectors such that vec(a).vec(b) = vec(a).vec(c ) = 0 and angle between vec(b) and vec(c ) is (pi)/(6) , prove that vec(a) = +-2(vec(b) xx vec(c )) .

    Find |vec(b)| , if (vec(a) + vec(b)).(vec(a) -vec(b)) = 8 and |vec(a)| = 8|vec(b)|