Home
Class 12
MATHS
Write the projection of vec(b) + vec(c )...

Write the projection of `vec(b) + vec(c )` on `vec(a)`, where `vec(a) = 2hat(i) - 2hat(j) + hat(k), vec(b) = hat(i) + 2hat(j) - 2hat(k)` and `vec(c ) = 2hat(i) - hat(j) + 4hat(k)`.

Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    OSWAAL PUBLICATION|Exercise Topic - 2 (Short Answer Type Questions - II)|12 Videos
  • VECTOR ALGEBRA

    OSWAAL PUBLICATION|Exercise Topic - 3|13 Videos
  • VECTOR ALGEBRA

    OSWAAL PUBLICATION|Exercise Topic - 1 (Short Answer Type Questions - II)|6 Videos
  • THREE DIMENSIONAL GEOMETRY

    OSWAAL PUBLICATION|Exercise Topic - 3 (Long answer type questions - II)|23 Videos

Similar Questions

Explore conceptually related problems

Write a unit vector in the direction of the sum of vectors vec(a) = 2hat(i) + 2hat(j) - 5hat(k) and vec(b) = 2hat(i) + hat(j) - 7hat(k) .

Write a unit vector in the direction of the sum of vectors vec(a) = 2hat(i) - hat(j) + 2hat(k) and vec(b) = -hat(i) + hat(j) + 3hat(k) .

If vec(AB) = 3hat(i) + 2hat(j) + 6hat(k), vec(OA) = hat(i) - hat(j) - 3hat(k) , find the value of vec(OB) .

Obtain the projection of the vector vec(a) = 2hat(i) + 3hat(j) + 2hat(k) on the vector vec(b) = hat(i) + 2hat(j) + hat(k) .

Find the angle between the vectors vec(a) = hat(i) + hat(j) + hat(k) and vec(b) = hat(i) - hat(j) + hat(k) .

Find the vector and cartesian equations of a plane containing the two lines vec(r) = (2 hat(i) + hat(j) - 3 hat(k)) + lambda(hat(i) + 2 hat(j) + 5 hat(k)) and vec(r) = (3hat(i) + 3 hat(j) + 2 hat(k)) + lambda (3 hat(i) - 2 hat(j) + 5 hat(k)) . Also show that the line vec(r) = (2 hat(i) + 5 hat(j) + 2 hat(k)) + p (3 hat(i) - 2 hat(j) + 5 hat(k)) lies in the plane.

Find the shortest distance between two lines whose vector equations are vec(r) = (hat(i) + 2 hat(j) + 3 hat(k))+lambda(hat(i)- 3hat(j) + 2 hat(k)) and vec(r) = (4 hat(i) + 5 hat(j) + 6 hat(k))+ mu (2 hat(i)+3 hat(j) + hat(k)) .

Write the projection of the vector 7hat(i) + hat(j) - 4hat(k) on the vector 2hat(i) + 6hat(j) + 3hat(k) .

Find the vector vec(p) which is perpendicular to both vec(alpha) = 4hat(i) + 5hat(j) - hat(k) and vec(beta) = hat(i) - 4hat(j) + 5hat(k) and vec(p).vec(q) = 21 , where vec(q) = 3hat(i) + hat(j) - hat(k) .