Home
Class 12
MATHS
If the vectors vec(a), vec(b) and vec(c ...

If the vectors `vec(a), vec(b)` and `vec(c )` are coplanar, prove that the vectors `vec(a) + vec(b), vec(b) + vec(c )` and `vec(c )+vec(a)` are also coplanar.

Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    OSWAAL PUBLICATION|Exercise Topic - 3|13 Videos
  • THREE DIMENSIONAL GEOMETRY

    OSWAAL PUBLICATION|Exercise Topic - 3 (Long answer type questions - II)|23 Videos

Similar Questions

Explore conceptually related problems

The value of [vec(a)-vec(b) vec(b)-vec(c) vec(c)-vec(a)] is equal to

If vec(a),vec(b) and vec(c) are unit vectors such that vec(a)+vec(b)+vec(c)=0 , then 3vec(a).vec(b)+2vec(b).vec(c)+vec(c).vec(a)=

Let vec a, vec b and vec c are unit coplanar vectors then the scalar triple product [2 vec a - vec b 2 vec b - vec c 2 vec c - vec a]

Prove that [vec(a)+vec(b),vec(b)+vec( c) , vec( c) +vec(a)] =2 [vec(a),vec(b),vec(c )] .

If vec(a) and vec(b) are perpendicular vectors |vec(a) + vec(b)| = 13 and |vec(a)| = 5 , find the value of |vec(b)|