Home
Class 12
MATHS
If vec(a) = 2hat(i) - 3hat(j) + 4hat(k),...

If `vec(a) = 2hat(i) - 3hat(j) + 4hat(k), vec(b) = hat(i) + 2hat(j) - 3hat(k)` and `vec(c ) = 3hat(i) + 4hat(j) - hat(k)`, then find `vec(a).(vec(b) xx vec(c ))` and `(vec(a) xx vec(b)).vec(c )`. Is, `vec(a).(vec(b) xx vec(c )) = (vec(a) xx vec(b)).vec(c )` ?

Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    OSWAAL PUBLICATION|Exercise Topic - 3|13 Videos
  • THREE DIMENSIONAL GEOMETRY

    OSWAAL PUBLICATION|Exercise Topic - 3 (Long answer type questions - II)|23 Videos

Similar Questions

Explore conceptually related problems

If vec(a) = 3vec(i) - 2vec(j) + 2vec(i), vec(b) = 6vec(i) + 4vec(j) - 2vec(k), vec(c ) = 3hat(i) - 2hat(j) - 4hat(k) , Then vec(a).(vec(b) xx vec(c )) is

If vec(AB) = 3hat(i) + 2hat(j) + 6hat(k), vec(OA) = hat(i) - hat(j) - 3hat(k) , find the value of vec(OB) .

If vec(a) = hat(i) + hat(j) + hat(k) and vec(b) = hat(j) - hat(k) , find a vector vec(c ) , such that vec(a) xx vec(c ) = vec(b) and vec(a).vec(c ) = 3 .

Let vec(a) = hat(i) + 4hat(j) + 2hat(k), vec(b) = 3hat(i) - 2hat(j) + 7hat(k) and vec(c )= 2hat(i) - hat(j) + 4hat(k) . Find a vector vec(p) which is perpendicular to both vec(a) and vec(b) and vec(p).vec(c ) = 18 .

If vec(a) = hat(i) + hat(j) + hat(k), vec(b) = 4hat(i) - 2hat(j) + 3hat(k) and vec(c ) = hat(i) - 2hat(j) + hat(k) , find a vector of magnitude 6 units which is parallel to the vector 2vec(a) - vec(b) + 3vec(c ) .

Find the angle between the vectors vec(a) = hat(i) + hat(j) + hat(k) and vec(b) = hat(i) - hat(j) + hat(k) .

If vec(a) = 2hat(i) + 2hat(j) + 3hat(k), vec(b) = -hat(i) + 2hat(j) + hat(k) and vec(c )=3hat(i)+2hat(j) such that vec(a)+lambda vec(b) is perpendicular to vec(c) , then find the value of lambda .

Let vec(a) =hat(i) +2hat(j) +hat(k),vec(b) =hat(i) -hat(j) +hat(k) and vec(c ) =hat(i) +hat(j) -hat(k) , vector in the plane of vec(a) and vec(b) whose projection on vec(c ) is 1/(sqrt(3)) is ______.

If vec(a) = 2hat(i) - 3hat(j) + hat(k), vec(b) = -hat(i) + hat(k), vec(c ) = 2hat(j) - hat(k) are three vectors, find the area of the parallelogram having diagonals vec(a) + vec(b) and vec(b) + vec(c ) .