Home
Class 14
MATHS
If (a + b) : (b + c) : (c + a) = 6 : 7 :...

If (a + b) : (b + c) : (c + a) = 6 : 7 : 8 and (a + b + c) = 14, then the value of c is

A

6

B

7

C

8

D

14

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given ratios and the total sum. ### Step-by-Step Solution: 1. **Set up the ratios**: We are given that \((a + b) : (b + c) : (c + a) = 6 : 7 : 8\). Let's express \(a + b\), \(b + c\), and \(c + a\) in terms of a common variable \(x\): - \(a + b = 6x\) - \(b + c = 7x\) - \(c + a = 8x\) 2. **Express the total**: We know from the problem that \(a + b + c = 14\). We can also express \(a + b + c\) in terms of \(x\): \[ a + b + c = (a + b) + (b + c) + (c + a) - (a + b + c) = 6x + 7x + 8x - (a + b + c) \] This simplifies to: \[ 2(a + b + c) = 21x \quad \Rightarrow \quad a + b + c = \frac{21x}{2} \] 3. **Set the equation**: Since we know \(a + b + c = 14\), we can set up the equation: \[ \frac{21x}{2} = 14 \] 4. **Solve for \(x\)**: To solve for \(x\), multiply both sides by 2: \[ 21x = 28 \] Now, divide by 21: \[ x = \frac{28}{21} = \frac{4}{3} \] 5. **Find \(a + b\)**: Now we can find \(a + b\): \[ a + b = 6x = 6 \times \frac{4}{3} = 8 \] 6. **Find \(b + c\)**: Next, we find \(b + c\): \[ b + c = 7x = 7 \times \frac{4}{3} = \frac{28}{3} \] 7. **Find \(c + a\)**: Now, we find \(c + a\): \[ c + a = 8x = 8 \times \frac{4}{3} = \frac{32}{3} \] 8. **Use the total to find \(c\)**: We know \(a + b + c = 14\). We can express \(c\) as: \[ c = 14 - (a + b) = 14 - 8 = 6 \] Thus, the value of \(c\) is **6**.
Promotional Banner

Topper's Solved these Questions

  • RATIO,PROPORTION AND VARIATION

    DISHA PUBLICATION|Exercise Test Yourself|15 Videos
  • RATIO,PROPORTION AND VARIATION

    DISHA PUBLICATION|Exercise Practice Exercises ( Standard Level)|26 Videos
  • QUADRATIC AND CUBIC EQUATIONS

    DISHA PUBLICATION|Exercise Test Yourself |15 Videos
  • SET THEORY

    DISHA PUBLICATION|Exercise Test Yourself|15 Videos

Similar Questions

Explore conceptually related problems

If (a + b):(b + c): (c+a)= 15:14:11, and a + b + c = 40, then what is the value of (3a+b-4c)?

If (a+b) : (b+c) : (c+a) = 7 : 6 : 5 and a+b+c = 27, then what will be the value of 1/a:1/b: 1/c ? यदि (a+b) : (b+c) : (c+a) = 7 : 6 : 5 तथा a+b+c = 27, है, तो 1/a:1/b: 1/c का मान क्या होगा ?

If a : b = 2 : 5, b : c = 4 : 7 and c : d = 9 : 14, then the value of a : b : c : d is : यदि a : b = 2 : 5, b : c = 4 : 7 और c : d = 9 : 14, तो a : b : c : d कितना है ?

If a: 5 = b: 7 = c: 8 , then the value of (a+b+c)/a=

If (a +b) : (b +c) : (c +a) ::6:7:8 & a+b+c= 14 then find c=?

If a+b:b+c:c+a = 6:7:8 anda + b+ c =14, then find c.