Home
Class 14
MATHS
|x^(2) - 4x| lt 5...

`|x^(2) - 4x| lt 5`

A

`-1 le x le 5`

B

`1 le x le 5`

C

`-1 le x le 1`

D

`-1 lt x lt 5`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( |x^2 - 4x| < 5 \), we can break it down into two separate inequalities based on the definition of absolute value. ### Step 1: Set up the inequalities The absolute value inequality \( |A| < B \) can be rewritten as: \[ -B < A < B \] In our case, we have: \[ -5 < x^2 - 4x < 5 \] ### Step 2: Solve the first inequality Let's solve the first part: \[ x^2 - 4x > -5 \] Rearranging gives: \[ x^2 - 4x + 5 > 0 \] Now, we can find the roots of the quadratic equation \( x^2 - 4x + 5 = 0 \) using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 1, b = -4, c = 5 \): \[ x = \frac{4 \pm \sqrt{(-4)^2 - 4 \cdot 1 \cdot 5}}{2 \cdot 1} \] \[ x = \frac{4 \pm \sqrt{16 - 20}}{2} \] \[ x = \frac{4 \pm \sqrt{-4}}{2} \] Since the discriminant is negative, there are no real roots, and the quadratic \( x^2 - 4x + 5 \) is always positive. ### Step 3: Solve the second inequality Now, let's solve the second part: \[ x^2 - 4x < 5 \] Rearranging gives: \[ x^2 - 4x - 5 < 0 \] Now, we can find the roots of the quadratic equation \( x^2 - 4x - 5 = 0 \): \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 1, b = -4, c = -5 \): \[ x = \frac{4 \pm \sqrt{(-4)^2 - 4 \cdot 1 \cdot (-5)}}{2 \cdot 1} \] \[ x = \frac{4 \pm \sqrt{16 + 20}}{2} \] \[ x = \frac{4 \pm \sqrt{36}}{2} \] \[ x = \frac{4 \pm 6}{2} \] This gives us two roots: \[ x = \frac{10}{2} = 5 \quad \text{and} \quad x = \frac{-2}{2} = -1 \] ### Step 4: Test intervals Now we need to test the intervals determined by the roots \(-1\) and \(5\): 1. For \( x < -1 \), choose \( x = -2 \): \[ (-2)^2 - 4(-2) - 5 = 4 + 8 - 5 = 7 \quad (\text{positive}) \] 2. For \( -1 < x < 5 \), choose \( x = 0 \): \[ 0^2 - 4(0) - 5 = -5 \quad (\text{negative}) \] 3. For \( x > 5 \), choose \( x = 6 \): \[ 6^2 - 4(6) - 5 = 36 - 24 - 5 = 7 \quad (\text{positive}) \] ### Step 5: Conclusion The solution to the inequality \( x^2 - 4x - 5 < 0 \) is: \[ -1 < x < 5 \] Thus, the solution to the original inequality \( |x^2 - 4x| < 5 \) is: \[ x \in (-1, 5) \]
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES

    DISHA PUBLICATION|Exercise Practice Exercises (Standard Level)|19 Videos
  • INEQUALITIES

    DISHA PUBLICATION|Exercise Practice Exercises (Expert Level)|11 Videos
  • INEQUALITIES

    DISHA PUBLICATION|Exercise Test Yourself|15 Videos
  • GEOMETRY

    DISHA PUBLICATION|Exercise TEST YOURSELF |3 Videos
  • INTEREST

    DISHA PUBLICATION|Exercise Test Yourself|15 Videos

Similar Questions

Explore conceptually related problems

| x ^ (2) -4x | <5

If log_(2) | 4 - 5x| lt 2, then x in

The values of 'a' for which int_0^(a) (3x^(2)+4x-5)dx lt a^(3)-2 are

The p.d.f. of a r.v. X is f(x)={{:((1)/(x^(2))","1ltxltoo),(0", otherwise"):} . If C_(1)={x : 1lt x lt 2}" and "C_(2)={x : 4lt x lt 5} , then P(C_(1)uuC_(2)) =

Solve |5 - 4x| lt -2