Home
Class 14
MATHS
If 1 le x le 3 and 2 le y le 4, what is ...

If `1 le x le 3` and `2 le y le 4`, what is the maximum value of `((x)/(y))` ?

A

A)`(2)/(3)`

B

B)4

C

C)`(3)/(2)`

D

D)2

Text Solution

AI Generated Solution

The correct Answer is:
To find the maximum value of \(\frac{x}{y}\) given the constraints \(1 \leq x \leq 3\) and \(2 \leq y \leq 4\), we can follow these steps: ### Step 1: Identify the ranges of \(x\) and \(y\) - The variable \(x\) can take any value from 1 to 3, inclusive. - The variable \(y\) can take any value from 2 to 4, inclusive. ### Step 2: Set up the expression to maximize We want to maximize the expression \(\frac{x}{y}\). ### Step 3: Analyze the expression To maximize \(\frac{x}{y}\), we should maximize \(x\) and minimize \(y\). This is because a larger numerator and a smaller denominator will yield a larger fraction. ### Step 4: Determine the maximum value of \(x\) The maximum value of \(x\) in the given range is: \[ x = 3 \] ### Step 5: Determine the minimum value of \(y\) The minimum value of \(y\) in the given range is: \[ y = 2 \] ### Step 6: Calculate the maximum value of \(\frac{x}{y}\) Now, substituting the maximum value of \(x\) and the minimum value of \(y\) into the expression: \[ \frac{x}{y} = \frac{3}{2} \] ### Step 7: Conclusion Thus, the maximum value of \(\frac{x}{y}\) is: \[ \frac{3}{2} \] ### Final Answer The maximum value of \(\frac{x}{y}\) is \(\frac{3}{2}\). ---
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES

    DISHA PUBLICATION|Exercise Practice Exercises (Standard Level)|19 Videos
  • INEQUALITIES

    DISHA PUBLICATION|Exercise Practice Exercises (Expert Level)|11 Videos
  • INEQUALITIES

    DISHA PUBLICATION|Exercise Test Yourself|15 Videos
  • GEOMETRY

    DISHA PUBLICATION|Exercise TEST YOURSELF |3 Videos
  • INTEREST

    DISHA PUBLICATION|Exercise Test Yourself|15 Videos

Similar Questions

Explore conceptually related problems

If 0 le x le 4, 0 le y le 8, x+y le 8 , then maximum of z=5x+3y is

If x, y and z are three non-zero numbers such that x + y le z -x, y + z le x -y and z + x le y -z , the maximum value of x + y + z is __________.

x + y le 6, x + y le 4

Solve the following LPP by using graphical method. Maximize : Z=6x+4y, Subject to x le 2, x + y le 2, -2 x +y le 1, x ge 0, y ge 0. Also find maximum value of Z.

2x +y ge 4 ,x+ y le 3,2x - 3y le 6

If 0 le x le 3 pi , 0 le y le 3 pi and cos x * sin y=1 , then find the possible number of values of the orederd pair (x,y) .

If x + y le 7 and x - y le 3 , then x le 5 . (True/False)

x-2y le 2 , x +y le 3,-2x +y le 4, x ge 0,y ge 0

If cos ^(-1) x - cos ^(-1) ""( y )/(2) = alpha , where -1 le x le 1, -2 le y le 2, x le (y)/(2) , then for all x,y, 4x^(2) - 4xy cos alpha + y^(2) is equal to