Home
Class 14
MATHS
A real number x satisfying 1-(1)/(n) lt ...

A real number x satisfying `1-(1)/(n) lt x le 3 + (1)/(n)`, for every positive integer n, is best described by

A

`1 lt x lt 4`

B

`1 lt x le 3`

C

`0 lt x le 4`

D

`1 le x le 3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( 1 - \frac{1}{n} < x \leq 3 + \frac{1}{n} \) for every positive integer \( n \), we will analyze the bounds as \( n \) varies. ### Step 1: Analyze the lower bound The lower bound of the inequality is given by: \[ 1 - \frac{1}{n} \] As \( n \) increases (i.e., \( n = 1, 2, 3, \ldots \)), the term \( \frac{1}{n} \) decreases, which means \( 1 - \frac{1}{n} \) increases. - For \( n = 1 \): \[ 1 - \frac{1}{1} = 0 \] - For \( n = 2 \): \[ 1 - \frac{1}{2} = 0.5 \] - For \( n = 3 \): \[ 1 - \frac{1}{3} \approx 0.67 \] As \( n \) approaches infinity, \( 1 - \frac{1}{n} \) approaches \( 1 \). Therefore, the lower bound approaches \( 1 \) but never reaches it. ### Step 2: Analyze the upper bound The upper bound of the inequality is given by: \[ 3 + \frac{1}{n} \] As \( n \) increases, the term \( \frac{1}{n} \) also decreases, which means \( 3 + \frac{1}{n} \) decreases. - For \( n = 1 \): \[ 3 + \frac{1}{1} = 4 \] - For \( n = 2 \): \[ 3 + \frac{1}{2} = 3.5 \] - For \( n = 3 \): \[ 3 + \frac{1}{3} \approx 3.33 \] As \( n \) approaches infinity, \( 3 + \frac{1}{n} \) approaches \( 3 \). Therefore, the upper bound approaches \( 3 \) but includes \( 3 \). ### Step 3: Combine the bounds From the analysis, we have: - The lower bound approaches \( 1 \) (but is always less than \( 1 \)). - The upper bound approaches \( 3 \) (and is equal to \( 3 \)). Thus, we can conclude that: \[ 1 < x \leq 4 \] ### Conclusion The real number \( x \) satisfying \( 1 - \frac{1}{n} < x \leq 3 + \frac{1}{n} \) for every positive integer \( n \) is best described by: \[ 1 < x \leq 4 \]
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES

    DISHA PUBLICATION|Exercise Practice Exercises (Expert Level)|11 Videos
  • INEQUALITIES

    DISHA PUBLICATION|Exercise Test Yourself|15 Videos
  • INEQUALITIES

    DISHA PUBLICATION|Exercise Practice Exercises (Foundation Level)|14 Videos
  • GEOMETRY

    DISHA PUBLICATION|Exercise TEST YOURSELF |3 Videos
  • INTEREST

    DISHA PUBLICATION|Exercise Test Yourself|15 Videos

Similar Questions

Explore conceptually related problems

For every integer n>=1,(3^(2^(n))-1) is divisible by

Solve (x-1)^(n)=x^(n), where n is a positive integer.

If A=[ab01], prove that A^(n)=[a^(n)b((a^(n)-1)/(a-1))01] for every positive integer n.

If a is a non-zero real or complex number.Use the principle of mathematical induction to prove that: If A=[a10a], then A^(n)=[a^(n)a^(n-1)0a^(n)] for every positive integer n .

Prove that for every positive integer n, 1^(n) + 8^(n) - 3^(n) - 6^(n) is divisible by 10.

DISHA PUBLICATION-INEQUALITIES-Practice Exercises (Standard Level)
  1. If x^(2) + x + (1)/(x^(2)) + (1)/(x) lt 0, then which of the following...

    Text Solution

    |

  2. Find the area of the quadrilateral formed by the solution set of the i...

    Text Solution

    |

  3. The solution set of inequality |x-1|+|x+1| lt 4 is

    Text Solution

    |

  4. If x in R and alpha = (x^(2))/((1+x^(4))), thens

    Text Solution

    |

  5. If x is real and find the limits between which x must lie , when |(x^(...

    Text Solution

    |

  6. If 6 ge x ge -2 and 4 ge y ge -4, find the limits for (y)/(x), where x...

    Text Solution

    |

  7. Which of the following shaded regions shows the graph of the inequalit...

    Text Solution

    |

  8. If x satisfies |x-1|+x|x-2|+|x-3|ge6, then A) 0 lexle4 B) xle-2 or...

    Text Solution

    |

  9. The shaded portion of figure shows the graph of which of the following...

    Text Solution

    |

  10. The set of all real numbers x for which x^2-|x+2| +x gt 0 is

    Text Solution

    |

  11. For the real numbers p, q, r, x, y, let p lt x lt q and p lt y lt r. W...

    Text Solution

    |

  12. What is the value of m which satisfies 3m^(2) - 21m + 30 lt 0 ?

    Text Solution

    |

  13. Which of the following values x do not satisfy the inequality (x^(2) -...

    Text Solution

    |

  14. Given that -1 le v le 1, -2 le u le -0.5 and -2 le z le -0.5 and w = ...

    Text Solution

    |

  15. A real number x satisfying 1-(1)/(n) lt x le 3 + (1)/(n), for every po...

    Text Solution

    |

  16. If |b| ge 1 and x = -|a|b, then which one of the following is necessa...

    Text Solution

    |

  17. The number of solutions of the equation 2x + y = 40 where both x and y...

    Text Solution

    |

  18. If a, b and c are three real numbers, then which of the following is N...

    Text Solution

    |

  19. x and y are real numbers satisfying the conditions 2 lt x lt 3 and -8 ...

    Text Solution

    |