Home
Class 14
MATHS
If n is such that 36 le n le 72, then x ...

If n is such that `36 le n le 72`, then `x = (n^(2) + 2sqrt(n)(n+4)+16)/(n+4sqrt(n) + 4)` satisfies

A

`20 lt x lt 54`

B

`23 lt x lt 58`

C

`25 lt x lt 64`

D

`28 lt x lt 60`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression for \( x \) given the constraints on \( n \) and determine the range of values that \( x \) can take. ### Given: \[ 36 \leq n \leq 72 \] \[ x = \frac{n^2 + 2\sqrt{n}(n + 4) + 16}{n + 4\sqrt{n} + 4} \] ### Step 1: Substitute the lower bound \( n = 36 \) First, we will calculate \( x \) when \( n = 36 \). 1. Calculate \( n^2 \): \[ n^2 = 36^2 = 1296 \] 2. Calculate \( 2\sqrt{n}(n + 4) \): \[ \sqrt{36} = 6 \quad \Rightarrow \quad 2\sqrt{36}(36 + 4) = 2 \cdot 6 \cdot 40 = 480 \] 3. Add \( 16 \): \[ 1296 + 480 + 16 = 1792 \] 4. Calculate \( n + 4\sqrt{n} + 4 \): \[ 4\sqrt{36} = 24 \quad \Rightarrow \quad 36 + 24 + 4 = 64 \] 5. Now, substitute these values into \( x \): \[ x = \frac{1792}{64} = 28 \] ### Step 2: Substitute the upper bound \( n = 72 \) Next, we will calculate \( x \) when \( n = 72 \). 1. Calculate \( n^2 \): \[ n^2 = 72^2 = 5184 \] 2. Calculate \( 2\sqrt{n}(n + 4) \): \[ \sqrt{72} = 6\sqrt{2} \quad \Rightarrow \quad 2\sqrt{72}(72 + 4) = 2 \cdot 6\sqrt{2} \cdot 76 = 912\sqrt{2} \] (For approximation, we can use \( \sqrt{2} \approx 1.414 \)): \[ 912 \cdot 1.414 \approx 1297.568 \] 3. Add \( 16 \): \[ 5184 + 1297.568 + 16 \approx 6500.568 \] 4. Calculate \( n + 4\sqrt{n} + 4 \): \[ 4\sqrt{72} = 24\sqrt{2} \quad \Rightarrow \quad 72 + 24\sqrt{2} + 4 \approx 76 + 33.94 \approx 109.94 \] 5. Now, substitute these values into \( x \): \[ x \approx \frac{6500.568}{109.94} \approx 59.18 \] ### Conclusion From our calculations: - When \( n = 36 \), \( x \approx 28 \). - When \( n = 72 \), \( x \approx 59.18 \). Thus, the range of \( x \) is: \[ 28 \leq x \leq 59.18 \] ### Final Answer The value of \( x \) satisfies: \[ 28 < x < 60 \]
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES

    DISHA PUBLICATION|Exercise Test Yourself|15 Videos
  • INEQUALITIES

    DISHA PUBLICATION|Exercise Practice Exercises (Standard Level)|19 Videos
  • GEOMETRY

    DISHA PUBLICATION|Exercise TEST YOURSELF |3 Videos
  • INTEREST

    DISHA PUBLICATION|Exercise Test Yourself|15 Videos

Similar Questions

Explore conceptually related problems

lim_ (n rarr oo) (sqrt (n ^ (4) +1) -sqrt (n ^ (4) -1))

(x^(n-1))/(sqrt(1+4x^(n)))

If n = 7 + 4sqrt(3) then value of (sqrt(n) + 1/(sqrtn)) is

If n in N such that (7 + 4 sqrt(3))^(n) = I + F , then IF is

If sqrt(2^n) = 16 , then the value of n is

If the major axis is n times the minor axis of the ellipse,then eccentricity is 1) (sqrt(n-1))/(n) 2) (sqrt(n-1))/(n^(2)) 3) (sqrt(n^(2)-1))/(n^(2)) 4) (sqrt(n^(2)-1))/(n)

lim_ (n rarr oo) ((sqrt (n ^ (2) + n) -1) / (n)) ^ (2sqrt (n ^ (2) + n) -1)

int(x^(n-1))/(sqrt(1+4x^(n)))dx

If sum of two numbers a&b is n xx their G.M then show that (a)/(b)=(n+sqrt(n^(2)-4))/(n-sqrt(n^(2)-4))