Home
Class 14
MATHS
If log(3)a=4, find value of a....

If `log_(3)a=4`, find value of a.

A

A)27

B

B)3

C

C)9

D

D)81

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( \log_{3} a = 4 \), we can use the property of logarithms that states: If \( \log_{b} x = y \), then \( x = b^{y} \). ### Step-by-Step Solution: 1. **Identify the logarithmic equation**: We start with the equation given in the problem: \[ \log_{3} a = 4 \] 2. **Apply the property of logarithms**: According to the property mentioned, we can rewrite the equation in exponential form: \[ a = 3^{4} \] 3. **Calculate \( 3^{4} \)**: Now we need to compute \( 3^{4} \): \[ 3^{4} = 3 \times 3 \times 3 \times 3 \] - First, calculate \( 3 \times 3 = 9 \). - Next, calculate \( 9 \times 3 = 27 \). - Finally, calculate \( 27 \times 3 = 81 \). Thus, \( 3^{4} = 81 \). 4. **Conclusion**: Therefore, the value of \( a \) is: \[ a = 81 \] ### Final Answer: The value of \( a \) is \( 81 \). ---
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    DISHA PUBLICATION|Exercise Practice Exercises (Standard Level)|43 Videos
  • LOGARITHMS

    DISHA PUBLICATION|Exercise Practice Exercises (Expert Level)|35 Videos
  • LINEAR EQUATIONS

    DISHA PUBLICATION|Exercise TEST YOUSELF|15 Videos
  • MENSURATION

    DISHA PUBLICATION|Exercise TEST YOURSELF|15 Videos

Similar Questions

Explore conceptually related problems

If x = log_(3) 4 " and " y = log_(5) 3 , find the value of log_(3) 10 " and " log_(3) (1 . 2) in terms of x and y .

given k=log_(3)2 find the value of (1)/(log_(3)4)+(1)/(log_(3)4)+(1)/(log_(3)3)+......+(1)/(log_(3)15)

If x=log_(3)4 and y=log_(5)3, find the value of log_(3)10 and log_(3)backslash(6)/(5) in terms of x and y.

If log_(3) .(x^(3))/(3) - 2 log_(3) 3x^(3)=a-b log_(3)x , then find the value of a + b.

If A=((log_(3)1-log_(3)4)(log_(3)9-log_(3)2))/((log_(3)1-log_(3)9)(log_(3)8-log_(3)4)) then find the value of 2(3^(A))

if (a+log_(4)3)/(a+log_(2)3)=(a+log_(8)3)/(a+log_(4)3)=b then find the value of b

If log2=0.3010backslash and backslash log3=0.4771, find the value of log 4.5.

If log4=0.6020 find the value of log8

If log_(3)4=a , log_(5)3=b , then find the value of log_(3)10 in terms of a and b.