Home
Class 14
MATHS
Evaluate : 3^(2-log(3)5)...

Evaluate : `3^(2-log_(3)5)`

A

A)`9/5`

B

B)45

C

C)`5//9`

D

D)`9log_(35)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \( 3^{2 - \log_{3}5} \), we can follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ 3^{2 - \log_{3}5} \] This can be rewritten using the properties of exponents: \[ 3^{2 - \log_{3}5} = \frac{3^2}{3^{\log_{3}5}} \] ### Step 2: Calculate \( 3^2 \) Next, we calculate \( 3^2 \): \[ 3^2 = 9 \] ### Step 3: Simplify \( 3^{\log_{3}5} \) Now, we simplify \( 3^{\log_{3}5} \). By the property of logarithms, we know that: \[ 3^{\log_{3}5} = 5 \] ### Step 4: Substitute back into the expression Now we can substitute back into our expression: \[ \frac{3^2}{3^{\log_{3}5}} = \frac{9}{5} \] ### Step 5: Final result Thus, the final result of the expression \( 3^{2 - \log_{3}5} \) is: \[ \frac{9}{5} \] ### Summary The evaluated expression is: \[ \boxed{\frac{9}{5}} \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    DISHA PUBLICATION|Exercise Practice Exercises (Standard Level)|43 Videos
  • LOGARITHMS

    DISHA PUBLICATION|Exercise Practice Exercises (Expert Level)|35 Videos
  • LINEAR EQUATIONS

    DISHA PUBLICATION|Exercise TEST YOUSELF|15 Videos
  • MENSURATION

    DISHA PUBLICATION|Exercise TEST YOURSELF|15 Videos

Similar Questions

Explore conceptually related problems

Evaluate: 2^(log_(3)5)-5^(log_(3)2)

Find the value of 3^(2+log_3 5)

Evaluate :((log_(3)(135))/(log_(15)(3)))-((log_(3)(5))/(log_(405)(3)))

Evaluate: 81^(1//log_(5)3) + 27^(log_(9)36) + 3^(4//log_(l)9)

Evaluate (log_(3)135)/(log_(15)3)-(log_(3)5)/(log_(405)3)

Find the value of (3^(2))^(5log_(3)x) :

Calculate 7^(log g_(3)5) + 3 ^(log_(5)7 ) - 5 ^(log_(3)7) - 7 ^(log_(5)3)

find the value of 2^(2+log_(2)3)

Evaluate :log_(5)3xx log_(27)25