Home
Class 14
MATHS
The value of [(1)/(log(xy)(xyz))+(1)/(lo...

The value of `[(1)/(log_(xy)(xyz))+(1)/(log_(yz)(xyz))+(1)/(log_(zx)(xyz))]` is equal to

A

A)1

B

B)2

C

C)3

D

D)4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\left[\frac{1}{\log_{xy}(xyz)} + \frac{1}{\log_{yz}(xyz)} + \frac{1}{\log_{zx}(xyz)}\right]\), we will use the change of base formula for logarithms, which states that: \[ \log_a(b) = \frac{\log_c(b)}{\log_c(a)} \] for any base \(c\). ### Step 1: Apply the change of base formula We can rewrite each term in the expression using the change of base formula. Let's choose base \(xyz\): \[ \log_{xy}(xyz) = \frac{\log_{xyz}(xyz)}{\log_{xyz}(xy)} = \frac{1}{\log_{xyz}(xy)} \] \[ \log_{yz}(xyz) = \frac{\log_{xyz}(xyz)}{\log_{xyz}(yz)} = \frac{1}{\log_{xyz}(yz)} \] \[ \log_{zx}(xyz) = \frac{\log_{xyz}(xyz)}{\log_{xyz}(zx)} = \frac{1}{\log_{xyz}(zx)} \] ### Step 2: Substitute back into the expression Now we can substitute these back into the original expression: \[ \frac{1}{\log_{xy}(xyz)} = \log_{xyz}(xy) \] \[ \frac{1}{\log_{yz}(xyz)} = \log_{xyz}(yz) \] \[ \frac{1}{\log_{zx}(xyz)} = \log_{xyz}(zx) \] Thus, the expression becomes: \[ \log_{xyz}(xy) + \log_{xyz}(yz) + \log_{xyz}(zx) \] ### Step 3: Combine the logarithms Using the property of logarithms that states \(\log_a(b) + \log_a(c) = \log_a(bc)\), we can combine these: \[ \log_{xyz}(xy) + \log_{xyz}(yz) + \log_{xyz}(zx) = \log_{xyz}(xy \cdot yz \cdot zx) \] ### Step 4: Simplify the argument of the logarithm Now we simplify the argument \(xy \cdot yz \cdot zx\): \[ xy \cdot yz \cdot zx = x^1y^2z^1 \] Thus, we have: \[ \log_{xyz}(xyz \cdot xyz) = \log_{xyz}((xyz)^2) \] ### Step 5: Final simplification By the property of logarithms, we can simplify this further: \[ \log_{xyz}((xyz)^2) = 2 \cdot \log_{xyz}(xyz) = 2 \] ### Final Result Therefore, the value of the original expression is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    DISHA PUBLICATION|Exercise Practice Exercises (Standard Level)|43 Videos
  • LOGARITHMS

    DISHA PUBLICATION|Exercise Practice Exercises (Expert Level)|35 Videos
  • LINEAR EQUATIONS

    DISHA PUBLICATION|Exercise TEST YOUSELF|15 Videos
  • MENSURATION

    DISHA PUBLICATION|Exercise TEST YOURSELF|15 Videos

Similar Questions

Explore conceptually related problems

Evaluate (1)/(log_(xy)(xyz))+(1)/(log_(yz)(xyz))+(1)/(log_(zx)(xyz))

Let L denots value of cos^(2)(alpha - beta) if sin2alpha + sin2beta = (1)/(2), cos2alpha + cos2beta = (sqrt(3))/(2) and M denotes value of (1)/(log_(xy)xyz) + (1)/(log_(yz)xyz) + (1)/(log_(zx)xyz) then 16L^(2) + M^(2) is

The value of 1/ ( 1+ log_(ab)c) + 1/(1+ log_(ac)b) + 1/ ( 1+ log_(bc)a) equals

1/(log_(xy)x + log_(xy)y = _______ ?

If x=500,y=100 and z=5050, then the value of (log_(xyz)x^(z))(1+log_(x)yz) is equal to

If (log_(e)x)/(y-z)=(log_(e)y)/(z-x)=(log_(e)z)/(x-y), prove that xyz=1

If (logx)/(a - b) = (logy)/(b-c) = (log z)/(c -a) , then xyz is equal to :

If the positive numbers x,y&z satisfy xyz=1000,log_(10)x log_(10)y+log_(10)xy log_(10)z=1 and log_(x)10+log_(y)10+log_(z)10=(1)/(3) then the value of root(3)((log_(10)x)^(3)+(log_(10)y)^(3)+(log_(10)z)^(3)) is