Home
Class 14
MATHS
Find the value of (8log(8)8)/(2log(sqrt(...

Find the value of `(8log_(8)8)/(2log_(sqrt(8))8)`

A

A)1

B

B)2

C

C)3

D

D)4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((8 \log_{8} 8) / (2 \log_{\sqrt{8}} 8)\), we will follow these steps: ### Step 1: Simplify \( \log_{8} 8 \) Using the property of logarithms that states \(\log_{a} a = 1\), we can simplify: \[ \log_{8} 8 = 1 \] ### Step 2: Substitute into the expression Now, substitute \(\log_{8} 8\) back into the expression: \[ \frac{8 \cdot 1}{2 \log_{\sqrt{8}} 8} = \frac{8}{2 \log_{\sqrt{8}} 8} \] ### Step 3: Simplify the numerator The numerator simplifies to: \[ \frac{8}{2 \log_{\sqrt{8}} 8} = \frac{8}{2} \cdot \frac{1}{\log_{\sqrt{8}} 8} = 4 \cdot \frac{1}{\log_{\sqrt{8}} 8} \] ### Step 4: Change of base for \( \log_{\sqrt{8}} 8 \) We can express \(\log_{\sqrt{8}} 8\) using the change of base formula: \[ \log_{\sqrt{8}} 8 = \frac{\log_{8} 8}{\log_{8} \sqrt{8}} \] Since \(\log_{8} 8 = 1\), we need to find \(\log_{8} \sqrt{8}\). ### Step 5: Calculate \( \log_{8} \sqrt{8} \) We know that \(\sqrt{8} = 8^{1/2}\), so: \[ \log_{8} \sqrt{8} = \log_{8} (8^{1/2}) = \frac{1}{2} \log_{8} 8 = \frac{1}{2} \cdot 1 = \frac{1}{2} \] ### Step 6: Substitute back into the expression Now substitute \(\log_{\sqrt{8}} 8\) back into the expression: \[ \log_{\sqrt{8}} 8 = \frac{1}{\frac{1}{2}} = 2 \] ### Step 7: Final simplification Now we can substitute this back into our expression: \[ 4 \cdot \frac{1}{2} = 4 \cdot \frac{1}{2} = 2 \] ### Final Answer Thus, the value of \(\frac{8 \log_{8} 8}{2 \log_{\sqrt{8}} 8}\) is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    DISHA PUBLICATION|Exercise Practice Exercises (Standard Level)|43 Videos
  • LOGARITHMS

    DISHA PUBLICATION|Exercise Practice Exercises (Expert Level)|35 Videos
  • LINEAR EQUATIONS

    DISHA PUBLICATION|Exercise TEST YOUSELF|15 Videos
  • MENSURATION

    DISHA PUBLICATION|Exercise TEST YOURSELF|15 Videos

Similar Questions

Explore conceptually related problems

find the value of log_(sqrt8)16

Find the value of (7^(3))^(-2log_(7)8)

Find the value of (log sqrt(27) + log sqrt(8) - log sqrt(125))/(log 6 - log 5)

Find the value of (log_(3)4)(log_(4)5)(log_(5)6)(log_(6)7)(log_(7)8)(log_(8)9)

The value of (log_(8)17)/(log_(9)23)-(log_(2sqrt(2))17)/(log_(3)23) is equal to

Find the value of (y^(3))^(-2 log_(y)8) is: