Home
Class 14
MATHS
If log(k)xlog(5)k=3, then find the value...

If `log_(k)xlog_(5)k=3`, then find the value of x.

A

A)`k^(5)`

B

B)`5k^(3)`

C

C)243

D

D)125

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \log_k x \cdot \log_5 k = 3 \), we can follow these steps: ### Step 1: Use the Change of Base Formula We know from logarithmic properties that: \[ \log_a b = \frac{1}{\log_b a} \] Using this property, we can rewrite \( \log_5 k \): \[ \log_5 k = \frac{1}{\log_k 5} \] ### Step 2: Substitute into the Original Equation Substituting this into the original equation gives us: \[ \log_k x \cdot \frac{1}{\log_k 5} = 3 \] ### Step 3: Simplify the Equation Multiplying both sides by \( \log_k 5 \) to eliminate the fraction: \[ \log_k x = 3 \cdot \log_k 5 \] ### Step 4: Use the Power Rule of Logarithms Using the property of logarithms that states \( a \cdot \log_b c = \log_b(c^a) \): \[ \log_k x = \log_k(5^3) \] ### Step 5: Set the Arguments Equal Since the logarithms are equal, we can set the arguments equal to each other: \[ x = 5^3 \] ### Step 6: Calculate the Value of \( x \) Calculating \( 5^3 \): \[ x = 125 \] Thus, the value of \( x \) is \( 125 \). ### Final Answer The value of \( x \) is \( 125 \). ---
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    DISHA PUBLICATION|Exercise Practice Exercises (Standard Level)|43 Videos
  • LOGARITHMS

    DISHA PUBLICATION|Exercise Practice Exercises (Expert Level)|35 Videos
  • LINEAR EQUATIONS

    DISHA PUBLICATION|Exercise TEST YOUSELF|15 Videos
  • MENSURATION

    DISHA PUBLICATION|Exercise TEST YOURSELF|15 Videos

Similar Questions

Explore conceptually related problems

if log_(k)x.log_(5)k=log_(x)5,k!=1,k>0, then find the value of x

If log_(k)xlog_(5)k=3 , then what is x equal to?

Let k be the unique positive value satisfying the equation (4k)^(log2)(9k)^(log3)=0, then find the value of (72k).

If 3^(log_(3)(5))+5^(log_(x)3) =8 then find the value of x.

If (log_(5) K) (log_(3) 5) (log_(k) x ) = k , then the value of x if k = 3 is

If k in N, such that log_(2)x+log_(4)x+log_(8)x=log_(k)x!=1 then the value of k is

If int_(0)^(1)(e^(-x)dx)/(1+e^(x))=log_(e)(1+e)+k, then find the value of k .

Find the value of x:log_(x)0.001=-3

if log_(k)x*log_(5)k=log_(x)5 then xis equal to