Home
Class 14
MATHS
If log(10)a=b, then fnd the value of 10^...

If `log_(10)a=b`, then fnd the value of `10^(3b)` in terms of a.

A

A)`a^(3)`

B

B)3a

C

C)`axx1000`

D

D)`axx100`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: 1. **Given:** \( \log_{10} a = b \) This means that \( a \) can be expressed in terms of \( b \) using the definition of logarithms. 2. **Convert the logarithmic equation to exponential form:** \[ a = 10^b \] 3. **Now, we need to find \( 10^{3b} \):** \[ 10^{3b} = (10^b)^3 \] Here, we are using the property of exponents that states \( (x^m)^n = x^{m \cdot n} \). 4. **Substituting \( 10^b \) with \( a \):** \[ 10^{3b} = (10^b)^3 = a^3 \] 5. **Final result:** \[ 10^{3b} = a^3 \] Thus, the value of \( 10^{3b} \) in terms of \( a \) is \( a^3 \).
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    DISHA PUBLICATION|Exercise Practice Exercises (Standard Level)|43 Videos
  • LOGARITHMS

    DISHA PUBLICATION|Exercise Practice Exercises (Expert Level)|35 Videos
  • LINEAR EQUATIONS

    DISHA PUBLICATION|Exercise TEST YOUSELF|15 Videos
  • MENSURATION

    DISHA PUBLICATION|Exercise TEST YOURSELF|15 Videos

Similar Questions

Explore conceptually related problems

If log_(3)4=a , log_(5)3=b , then find the value of log_(3)10 in terms of a and b.

If log_(10)x=a, find the values of 10^(a-1) in terms of x.

If log_(10)(ab^(3))=log_(10)(a^(2)b)=1, then the value of log_(10)(ab) is equal to

Given log_(10)2 = a and log_(10)3 = b . If 3^(x+2) = 45 , then the value of x in terms of a and b is-

If log_(10) 3=1.4771 and log_(10) 7=0.8451, then the value of log_(10)(23 1/3) is equal to a. 0. 368 b. 1. 368 c. 1. 356 d. 1. 477

A circle has radius log_(10)(a^(2)) and a circumference of log_(10)(b^(4)) . Then the value of log_(a)b is equal to :

Let a and b be real numbers and let f(x)=a sin x+b root(3)(x)+4,AA x in R. If f(log_(10)(log_(3)10))=5 then find the value of f(log_(10)(log_(10)3))