Home
Class 14
MATHS
log(10)10+log(10)10^(2)+ . . .+log(10)10...

`log_(10)10+log_(10)10^(2)+ . . .+log_(10)10^(n)`

A

A)`n^(2)+1`

B

B)`n^(2)-1`

C

C)`((n^(2)+n)/(3))`

D

D)`(n^(2)+n)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \log_{10} 10 + \log_{10} 10^2 + \ldots + \log_{10} 10^n \), we can follow these steps: ### Step 1: Simplify Each Logarithmic Term Using the property of logarithms that states \( \log_b (a^c) = c \cdot \log_b a \), we can simplify each term in the series: - The first term is \( \log_{10} 10 = 1 \) (since \( \log_a a = 1 \)). - The second term is \( \log_{10} 10^2 = 2 \cdot \log_{10} 10 = 2 \). - The third term is \( \log_{10} 10^3 = 3 \cdot \log_{10} 10 = 3 \). - Continuing this pattern, the \( k \)-th term is \( \log_{10} 10^k = k \). Thus, the series can be rewritten as: \[ 1 + 2 + 3 + \ldots + n \] ### Step 2: Use the Formula for the Sum of the First n Natural Numbers The sum of the first \( n \) natural numbers can be calculated using the formula: \[ S_n = \frac{n(n + 1)}{2} \] ### Step 3: Substitute into the Formula Substituting \( n \) into the formula gives us: \[ S_n = \frac{n(n + 1)}{2} \] ### Conclusion Thus, the value of the expression \( \log_{10} 10 + \log_{10} 10^2 + \ldots + \log_{10} 10^n \) simplifies to: \[ \frac{n(n + 1)}{2} \] ### Final Answer The final answer is: \[ \frac{n(n + 1)}{2} \] ---
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    DISHA PUBLICATION|Exercise Practice Exercises (Standard Level)|43 Videos
  • LOGARITHMS

    DISHA PUBLICATION|Exercise Practice Exercises (Expert Level)|35 Videos
  • LINEAR EQUATIONS

    DISHA PUBLICATION|Exercise TEST YOUSELF|15 Videos
  • MENSURATION

    DISHA PUBLICATION|Exercise TEST YOURSELF|15 Videos

Similar Questions

Explore conceptually related problems

The value of log_(10)1 + log_(10) 10 + log_(10)100+ …….. log_(10)(10000000000)

log_(10)^(2) x + log_(10) x^(2) = log_(10)^(2) 2 - 1

If (1 + 3 + 5 + .... " upto n terms ")/(4 + 7 + 10 + ... " upto n terms") = (20)/(7 " log"_(10)x) and n = log_(10)x + log_(10) x^((1)/(2)) + log_(10) x^((1)/(4)) + log_(10) x^((1)/(8)) + ... + oo , then x is equal to

If log_(10)2 log_(2)10 + log_(10)(10^(x)) =2 , then what is the value of x?

(log_(10)100x)^(2)+(log_(10)10x)^(2)+log_(10)x<=14

If log_(10) x+log_(10) y= 3 and log_(10) x-log_(10) y=1, then x and y are respectively a. 10 and 100 b. 100 and 10 c. 1000 and 100 d. 100 and 1000

Find the domain of the function f(x)=log_(10)((log_(10)x^(2))-5log_(10)x+6)