Home
Class 14
MATHS
N=n!, where ngt2. Find the value of (lo...

`N=n!`, where `ngt2`. Find the value of `(log_(2)N)^(-1)+(log_(3)N)^(-1)+(log_(4)N)^(-1)+. . . . . (log_(n)N)^(-1)`.

A

(A)0

B

(B)1

C

(C)10

D

(D)N

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression: \[ \frac{1}{\log_2 N} + \frac{1}{\log_3 N} + \frac{1}{\log_4 N} + \ldots + \frac{1}{\log_n N} \] where \( N = n! \) and \( n > 2 \). ### Step 1: Rewrite the expression using the change of base formula Using the property of logarithms that states: \[ \log_a b = \frac{1}{\log_b a} \] we can rewrite each term in the expression: \[ \frac{1}{\log_k N} = \log_N k \] Thus, the expression becomes: \[ \log_N 2 + \log_N 3 + \log_N 4 + \ldots + \log_N n \] ### Step 2: Combine the logarithms Using the property of logarithms that states: \[ \log_a b + \log_a c = \log_a (bc) \] we can combine the logarithms: \[ \log_N (2 \times 3 \times 4 \times \ldots \times n) \] ### Step 3: Recognize the product as \( n! \) The product \( 2 \times 3 \times 4 \times \ldots \times n \) is equal to \( n! \). Therefore, we can rewrite the expression as: \[ \log_N (n!) \] ### Step 4: Substitute \( N \) with \( n! \) Since \( N = n! \), we have: \[ \log_{n!} (n!) \] ### Step 5: Evaluate the logarithm Using the property of logarithms that states: \[ \log_a a = 1 \] we find: \[ \log_{n!} (n!) = 1 \] ### Final Answer Thus, the value of the original expression is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    DISHA PUBLICATION|Exercise Test Yourself |15 Videos
  • LOGARITHMS

    DISHA PUBLICATION|Exercise Practice Exercises (Standard Level)|43 Videos
  • LINEAR EQUATIONS

    DISHA PUBLICATION|Exercise TEST YOUSELF|15 Videos
  • MENSURATION

    DISHA PUBLICATION|Exercise TEST YOURSELF|15 Videos

Similar Questions

Explore conceptually related problems

What is the value of (1)/(log_(2)n)+(1)/(log_(3)n)+ . . .+(1)/(log_(40)n) ?

The value of log_(b)a+log_(b^(2))a^(2) + log_(b^(3))a^(3) + ... + log_(b^(n))a^(n)

(1)/(log_(2)(n))+(1)/(log_(3)(n))+(1)/(log_(4)(n))+....+(1)/(log_(43)(n))

(1)/(log_(2)(n))+(1)/(log_(3)(n))+(1)/(log_(4)(n))+....+(1)/(log_(43)(n))

Let n=75600 ,then find the value of (4)/(log_(2)n)+(3)/(log_(3)n)+(2)/(log_(5)n)+(1)/(log_(7)n)

The value of (1)/(log_(3)n)+(1)/(log_(4)n) + (1)/(log_(5)n) + ... + (1)/(log_(8)n) is ______.

What is (1)/(log_(2)N)+(1)/(log_(3)N)+(1)/(log_(4)N)+....+(1)/(log_(100)N) " equal to "(Nne1) ?

If n=|__2002, evaluate (1)/(log_(2)n)+(1)/(log_(3)n)+(1)/(log_(4)n)+......+(1)/(log_(2002)n)

DISHA PUBLICATION-LOGARITHMS-Practice Exercises (Expert Level)
  1. Ther are n zeros appearing immediately after the decimal point in the ...

    Text Solution

    |

  2. What is the solution of log(10)[1-{1-(1-x^(2))^(-1)}^(-1)]^(1/2)= 1 ?

    Text Solution

    |

  3. N=n!, where ngt2. Find the value of (log(2)N)^(-1)+(log(3)N)^(-1)+(lo...

    Text Solution

    |

  4. What is the value of (1)/(log(2)n)+(1)/(log(3)n)+ . . .+(1)/(log(40)n)...

    Text Solution

    |

  5. Which of the following options represents the value of logsqrt(128) ...

    Text Solution

    |

  6. Let u=(log(2)x)^(2)-6log(2)x+12 where x is a real number.. Then the e...

    Text Solution

    |

  7. If 5^(x)=(0.5)^(y)=1000, then the value of (1/x-1/y) is

    Text Solution

    |

  8. The least value of expression 2log(10)x-log(x)(1//100) for xgt1 is ?

    Text Solution

    |

  9. What is the value of P if log(e)2.log(p)625=log(10)16.log(e)10 ?

    Text Solution

    |

  10. If log(12)27=a, then log(6)16 is

    Text Solution

    |

  11. If 2[log(x+y)-log5]=logx+logy, then what is the value of x^(2)+y^(2) ...

    Text Solution

    |

  12. The number of solutions of the equation log(x-3)(x^(3)-3x^(2)-4x+8)=3...

    Text Solution

    |

  13. Find the value of x, if the fourth term in the expansion of ((1)/(x^(...

    Text Solution

    |

  14. Solve : 3^(2x-1)=4^(x+2)

    Text Solution

    |

  15. Solve for x:log(5)(5^(1//x)+125)=log(5)6+1+1//2x

    Text Solution

    |

  16. If log (0.57) = 0. 756 then the value of log 57 + log (0.57)^(3) + log...

    Text Solution

    |

  17. If log(2)[log(7)(x^(2)-x+37)]=1, , then what could be the value of x ?

    Text Solution

    |

  18. If 1/3log(3)M+3log(3)N=1+log(0.008)5, then

    Text Solution

    |

  19. If log(3)2,log(3)(2^(x)-5),log(3)(2^(x)-7/2) are in arithmetic progre...

    Text Solution

    |

  20. If xgey and ygt1, then the value of the expression log(x)(x/y)+log(y)...

    Text Solution

    |