Home
Class 14
MATHS
What is the value of (1)/(log(2)n)+(1)/(...

What is the value of `(1)/(log_(2)n)+(1)/(log_(3)n)+ . . .+(1)/(log_(40)n)` ?

A

`(1)/(log_((40!))n)`

B

`log_((40!)^(n))`

C

1

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ S = \frac{1}{\log_2 n} + \frac{1}{\log_3 n} + \frac{1}{\log_4 n} + \ldots + \frac{1}{\log_{40} n} \] ### Step 1: Apply the Change of Base Formula Using the change of base formula for logarithms, we can express \(\log_b a\) as \(\frac{\log_k a}{\log_k b}\) for any base \(k\). Here, we will use base \(n\): \[ \log_b n = \frac{\log_n n}{\log_n b} = \frac{1}{\log_n b} \] Thus, we can rewrite each term in the sum: \[ \frac{1}{\log_b n} = \log_n b \] ### Step 2: Rewrite the Sum Now, we can rewrite the entire sum \(S\): \[ S = \log_n 2 + \log_n 3 + \log_n 4 + \ldots + \log_n 40 \] ### Step 3: Use the Property of Logarithms Using the property of logarithms that states \(\log_a b + \log_a c = \log_a (bc)\), we can combine the logarithms: \[ S = \log_n (2 \cdot 3 \cdot 4 \cdots 40) \] ### Step 4: Recognize the Product The product \(2 \cdot 3 \cdot 4 \cdots 40\) is equal to \(40!\) (40 factorial). Therefore, we can express \(S\) as: \[ S = \log_n (40!) \] ### Final Step: Conclusion Thus, the value of the original expression is: \[ S = \log_n (40!) \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    DISHA PUBLICATION|Exercise Test Yourself |15 Videos
  • LOGARITHMS

    DISHA PUBLICATION|Exercise Practice Exercises (Standard Level)|43 Videos
  • LINEAR EQUATIONS

    DISHA PUBLICATION|Exercise TEST YOUSELF|15 Videos
  • MENSURATION

    DISHA PUBLICATION|Exercise TEST YOURSELF|15 Videos

Similar Questions

Explore conceptually related problems

In n = 10!, then what is the value of the following? (1)/(log_(2)n) +(1)/(log_(3)n) +(1)/(log_(4)n)+…..+ (1)/(log_(10)n)

The value of (1)/(log_(3)n)+(1)/(log_(4)n) + (1)/(log_(5)n) + ... + (1)/(log_(8)n) is ______.

Let n=75600 ,then find the value of (4)/(log_(2)n)+(3)/(log_(3)n)+(2)/(log_(5)n)+(1)/(log_(7)n)

If n=(2017)! , then what is (1)/(log_(2)n)+(1)/(log_(3)n)+(1)/(log_(4)n)+....+(1)/(log_(2017)n) equal to?

If n>1, then prove that(1)/(log_(2)n)+(1)/(log_(3)n)+...+(1)/(log_(53)n)=(1)/(log_(53)n)

( The value of )/(log_(2)N)+(1)/(log_(4)N)+...+(1)/(log_(1988)N) is ;(N>0 and N!=0)( i) (1)/(log_(1998)((1)/(N)))( ii) log_(N)(1998!) (iii) log _(N)1998 (iv) none of these

What is (1)/(log_(2)N)+(1)/(log_(3)N)+(1)/(log_(4)N)+....+(1)/(log_(100)N) " equal to "(Nne1) ?

DISHA PUBLICATION-LOGARITHMS-Practice Exercises (Expert Level)
  1. What is the solution of log(10)[1-{1-(1-x^(2))^(-1)}^(-1)]^(1/2)= 1 ?

    Text Solution

    |

  2. N=n!, where ngt2. Find the value of (log(2)N)^(-1)+(log(3)N)^(-1)+(lo...

    Text Solution

    |

  3. What is the value of (1)/(log(2)n)+(1)/(log(3)n)+ . . .+(1)/(log(40)n)...

    Text Solution

    |

  4. Which of the following options represents the value of logsqrt(128) ...

    Text Solution

    |

  5. Let u=(log(2)x)^(2)-6log(2)x+12 where x is a real number.. Then the e...

    Text Solution

    |

  6. If 5^(x)=(0.5)^(y)=1000, then the value of (1/x-1/y) is

    Text Solution

    |

  7. The least value of expression 2log(10)x-log(x)(1//100) for xgt1 is ?

    Text Solution

    |

  8. What is the value of P if log(e)2.log(p)625=log(10)16.log(e)10 ?

    Text Solution

    |

  9. If log(12)27=a, then log(6)16 is

    Text Solution

    |

  10. If 2[log(x+y)-log5]=logx+logy, then what is the value of x^(2)+y^(2) ...

    Text Solution

    |

  11. The number of solutions of the equation log(x-3)(x^(3)-3x^(2)-4x+8)=3...

    Text Solution

    |

  12. Find the value of x, if the fourth term in the expansion of ((1)/(x^(...

    Text Solution

    |

  13. Solve : 3^(2x-1)=4^(x+2)

    Text Solution

    |

  14. Solve for x:log(5)(5^(1//x)+125)=log(5)6+1+1//2x

    Text Solution

    |

  15. If log (0.57) = 0. 756 then the value of log 57 + log (0.57)^(3) + log...

    Text Solution

    |

  16. If log(2)[log(7)(x^(2)-x+37)]=1, , then what could be the value of x ?

    Text Solution

    |

  17. If 1/3log(3)M+3log(3)N=1+log(0.008)5, then

    Text Solution

    |

  18. If log(3)2,log(3)(2^(x)-5),log(3)(2^(x)-7/2) are in arithmetic progre...

    Text Solution

    |

  19. If xgey and ygt1, then the value of the expression log(x)(x/y)+log(y)...

    Text Solution

    |

  20. If log(y)x=(a.log(z)y)=(b.log(x)z)=ab, then which of the following pai...

    Text Solution

    |