Home
Class 14
MATHS
What is the value of P if log(e)2.log(p)...

What is the value of P if `log_(e)2.log_(p)625=log_(10)16.log_(e)10` ?

A

2

B

4

C

5

D

7

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \log_{e}2 \cdot \log_{p}625 = \log_{10}16 \cdot \log_{e}10 \), we will follow these steps: ### Step 1: Rewrite the logarithms First, we can express \( \log_{p}625 \) and \( \log_{10}16 \) using the change of base formula: \[ \log_{p}625 = \frac{\log_{e}625}{\log_{e}p} \] \[ \log_{10}16 = \frac{\log_{e}16}{\log_{e}10} \] ### Step 2: Substitute into the equation Substituting these into the original equation gives: \[ \log_{e}2 \cdot \frac{\log_{e}625}{\log_{e}p} = \frac{\log_{e}16}{\log_{e}10} \cdot \log_{e}10 \] This simplifies to: \[ \log_{e}2 \cdot \frac{\log_{e}625}{\log_{e}p} = \log_{e}16 \] ### Step 3: Isolate \( \log_{e}p \) Rearranging the equation to isolate \( \log_{e}p \): \[ \log_{e}2 \cdot \log_{e}625 = \log_{e}16 \cdot \log_{e}p \] \[ \log_{e}p = \frac{\log_{e}2 \cdot \log_{e}625}{\log_{e}16} \] ### Step 4: Calculate \( \log_{e}625 \) and \( \log_{e}16 \) We know that: \[ 625 = 5^4 \implies \log_{e}625 = 4\log_{e}5 \] \[ 16 = 2^4 \implies \log_{e}16 = 4\log_{e}2 \] ### Step 5: Substitute back into the equation Substituting these values back into the equation gives: \[ \log_{e}p = \frac{\log_{e}2 \cdot 4\log_{e}5}{4\log_{e}2} \] The \( 4\log_{e}2 \) cancels out: \[ \log_{e}p = \log_{e}5 \] ### Step 6: Solve for \( p \) Since \( \log_{e}p = \log_{e}5 \), we can conclude that: \[ p = 5 \] Thus, the value of \( P \) is \( 5 \). ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LOGARITHMS

    DISHA PUBLICATION|Exercise Test Yourself |15 Videos
  • LOGARITHMS

    DISHA PUBLICATION|Exercise Practice Exercises (Standard Level)|43 Videos
  • LINEAR EQUATIONS

    DISHA PUBLICATION|Exercise TEST YOUSELF|15 Videos
  • MENSURATION

    DISHA PUBLICATION|Exercise TEST YOURSELF|15 Videos

Similar Questions

Explore conceptually related problems

(log_(e)2)(log_(x)625)=(log_(10)16)(log_(e)10)

Find the value of x in (log.2)(log_(x)625)=(log_(10)16)(log10)

Knowledge Check

  • If "log"_(e) 2."log"_(x) 27 = "log"_(10) 8."log"_(e) 10 , then x =

    A
    1
    B
    3
    C
    2
    D
    4
  • What is the value of log_(10)(9/8)-log_(10)((27)/(32))+log_(10)(3/4) ?

    A
    3
    B
    2
    C
    1
    D
    0
  • The value of log_(10)1+log_(10)10+log_(10)100+...log_(10)10000000000

    A
    10
    B
    11
    C
    11111111111
    D
    55
  • Similar Questions

    Explore conceptually related problems

    {:(Column -I,Column -II),((A)"Anti logarithm of" (0.bar(6))"to the base 27 has the value equal to",(P)5),((B)"Characteristic of the logarithm of 2008 to the base 2 is",(Q)7),((C)"The value of b satisfying the equation",(R)9),(log_(e)2.log_(b)625=log_(10)16.log_(e)10 is,),((D)"Number of naughts after decimal before a significant figure",(S)10),("comes in the number" ((5)/(6))^(100)is,):}

    The value of (log_(3)8)/(log_(9)16log_(4)10)

    What is the value of (1/3 log_(10)125 - 2log_(10)4 + log_(10)32 + log_(10)I) ?

    3log_(2)5+log_(2)10-log_(2)625

    Find the value of log_(10)5*log_(10)20+(log_(10)2)^(2)