Home
Class 14
MATHS
What is the value of P if log(e)2.log(p)...

What is the value of P if `log_(e)2.log_(p)625=log_(10)16.log_(e)10` ?

A

2

B

4

C

5

D

7

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \log_{e}2 \cdot \log_{p}625 = \log_{10}16 \cdot \log_{e}10 \), we will follow these steps: ### Step 1: Rewrite the logarithms First, we can express \( \log_{p}625 \) and \( \log_{10}16 \) using the change of base formula: \[ \log_{p}625 = \frac{\log_{e}625}{\log_{e}p} \] \[ \log_{10}16 = \frac{\log_{e}16}{\log_{e}10} \] ### Step 2: Substitute into the equation Substituting these into the original equation gives: \[ \log_{e}2 \cdot \frac{\log_{e}625}{\log_{e}p} = \frac{\log_{e}16}{\log_{e}10} \cdot \log_{e}10 \] This simplifies to: \[ \log_{e}2 \cdot \frac{\log_{e}625}{\log_{e}p} = \log_{e}16 \] ### Step 3: Isolate \( \log_{e}p \) Rearranging the equation to isolate \( \log_{e}p \): \[ \log_{e}2 \cdot \log_{e}625 = \log_{e}16 \cdot \log_{e}p \] \[ \log_{e}p = \frac{\log_{e}2 \cdot \log_{e}625}{\log_{e}16} \] ### Step 4: Calculate \( \log_{e}625 \) and \( \log_{e}16 \) We know that: \[ 625 = 5^4 \implies \log_{e}625 = 4\log_{e}5 \] \[ 16 = 2^4 \implies \log_{e}16 = 4\log_{e}2 \] ### Step 5: Substitute back into the equation Substituting these values back into the equation gives: \[ \log_{e}p = \frac{\log_{e}2 \cdot 4\log_{e}5}{4\log_{e}2} \] The \( 4\log_{e}2 \) cancels out: \[ \log_{e}p = \log_{e}5 \] ### Step 6: Solve for \( p \) Since \( \log_{e}p = \log_{e}5 \), we can conclude that: \[ p = 5 \] Thus, the value of \( P \) is \( 5 \). ---
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    DISHA PUBLICATION|Exercise Test Yourself |15 Videos
  • LOGARITHMS

    DISHA PUBLICATION|Exercise Practice Exercises (Standard Level)|43 Videos
  • LINEAR EQUATIONS

    DISHA PUBLICATION|Exercise TEST YOUSELF|15 Videos
  • MENSURATION

    DISHA PUBLICATION|Exercise TEST YOURSELF|15 Videos

Similar Questions

Explore conceptually related problems

(log_(e)2)(log_(x)625)=(log_(10)16)(log_(e)10)

Find the value of x in (log.2)(log_(x)625)=(log_(10)16)(log10)

{:(Column -I,Column -II),((A)"Anti logarithm of" (0.bar(6))"to the base 27 has the value equal to",(P)5),((B)"Characteristic of the logarithm of 2008 to the base 2 is",(Q)7),((C)"The value of b satisfying the equation",(R)9),(log_(e)2.log_(b)625=log_(10)16.log_(e)10 is,),((D)"Number of naughts after decimal before a significant figure",(S)10),("comes in the number" ((5)/(6))^(100)is,):}

If "log"_(e) 2."log"_(x) 27 = "log"_(10) 8."log"_(e) 10 , then x =

The value of (log_(3)8)/(log_(9)16log_(4)10)

What is the value of (1/3 log_(10)125 - 2log_(10)4 + log_(10)32 + log_(10)I) ?

3log_(2)5+log_(2)10-log_(2)625

Find the value of log_(10)5*log_(10)20+(log_(10)2)^(2)

What is the value of log_(10)(9/8)-log_(10)((27)/(32))+log_(10)(3/4) ?

DISHA PUBLICATION-LOGARITHMS-Practice Exercises (Expert Level)
  1. If 5^(x)=(0.5)^(y)=1000, then the value of (1/x-1/y) is

    Text Solution

    |

  2. The least value of expression 2log(10)x-log(x)(1//100) for xgt1 is ?

    Text Solution

    |

  3. What is the value of P if log(e)2.log(p)625=log(10)16.log(e)10 ?

    Text Solution

    |

  4. If log(12)27=a, then log(6)16 is

    Text Solution

    |

  5. If 2[log(x+y)-log5]=logx+logy, then what is the value of x^(2)+y^(2) ...

    Text Solution

    |

  6. The number of solutions of the equation log(x-3)(x^(3)-3x^(2)-4x+8)=3...

    Text Solution

    |

  7. Find the value of x, if the fourth term in the expansion of ((1)/(x^(...

    Text Solution

    |

  8. Solve : 3^(2x-1)=4^(x+2)

    Text Solution

    |

  9. Solve for x:log(5)(5^(1//x)+125)=log(5)6+1+1//2x

    Text Solution

    |

  10. If log (0.57) = 0. 756 then the value of log 57 + log (0.57)^(3) + log...

    Text Solution

    |

  11. If log(2)[log(7)(x^(2)-x+37)]=1, , then what could be the value of x ?

    Text Solution

    |

  12. If 1/3log(3)M+3log(3)N=1+log(0.008)5, then

    Text Solution

    |

  13. If log(3)2,log(3)(2^(x)-5),log(3)(2^(x)-7/2) are in arithmetic progre...

    Text Solution

    |

  14. If xgey and ygt1, then the value of the expression log(x)(x/y)+log(y)...

    Text Solution

    |

  15. If log(y)x=(a.log(z)y)=(b.log(x)z)=ab, then which of the following pai...

    Text Solution

    |

  16. What is the value of (log(sqrt(alphabeta))(H))/(log(alphabeta)(beta))

    Text Solution

    |

  17. 1/(log(2)a) + 1/(log(4)a) + 1/(log(8)a)+….. To n terms =(n(n+1))/k, th...

    Text Solution

    |

  18. If (x^(4) - 2x^(2)y^(2) + y^(4))^(a-1) =(x-y)^(2a) (x+y)^(-2), then th...

    Text Solution

    |

  19. If u = v^(2) = w^(2) =z^(4), then log(u)(uvwz), is equal to

    Text Solution

    |

  20. The first term and the last term of a GP are a and k respectively. If ...

    Text Solution

    |